CATEGORy 3 - ELECTRONICS

A. “END ITEMS,” “EQUIPMENT,” “ACCESSORIES,” “ATTACHMENTS,” “PARTS,” “COMPONENTS,” AND “SYSTEMS”

Note 1: The control status of equipment and “components” described in 3A001 or 3A002, other than those described in 3A001.a.3 to 3A001.a.10, or 3A001.a.12 to 3A001.a.14, which are “specially designed” for or which have the same functional characteristics as other equipment is determined by the control status of the other equipment.

Note 2: The control status of integrated circuits described in 3A001.a.3 to 3A001.a.9, or 3A001.a.12 to 3A001.a.14, which are unalterably programmed or designed for a specific function for other equipment is determined by the control status of the other equipment.

N.B.: When the manufacturer or applicant cannot determine the control status of the other equipment, the control status of the integrated circuits is determined in 3A001.a.3 to 3A001.a.9, and 3A001.a.12 to 3A001.a.14.

3A001 Electronic items as follows (see List of Items Controlled).

Reason for Control: NS, RS, MT, NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to “Monolithic Microwave Integrated Circuit” (“MMIC”) amplifiers in 3A001.b.2 and discrete microwave transistors in 3A001.b.3, except those 3A001.b.2 and b.3 items being exported or reexported for use in civil telecommunications applications</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>RS applies “Monolithic Microwave Integrated Circuit” (“MMIC”) amplifiers in 3A001.b.2 and discrete microwave transistors in 3A001.b.3, except those 3A001.b.2 and b.3 items being exported or reexported for use in civil telecommunications applications</td>
<td>RS Column 1</td>
</tr>
<tr>
<td>MT applies to 3A001.a.1.a when usable in “missiles”; and to 3A001.a.5.a when “designed or modified” for military use, hermetically sealed and rated for operation in the temperature range from below -54°C to above +125°C</td>
<td>MT Column 1</td>
</tr>
<tr>
<td>NP applies to pulse discharge capacitors in 3A001.e.2 and superconducting solenoidal electromagnets in 3A001.e.3 that meet or exceed the technical parameters in 3A201.a and 3A201.b, respectively</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A for MT or NP; N/A for “Monolithic Microwave Integrated Circuit” (“MMIC”) amplifiers in 3A001.b.2 and discrete microwave transistors in 3A001.b.3, except those that are being
exported or reexported for use in civil telecommunications applications
Yes for:
$1500: 3A001.c
$3000: 3A001.b.1, b.2 (exported or reexported for use in civil telecommunications applications), b.3 (exported or reexported for use in civil telecommunications applications), b.9, .d, .e, .f, and .g.
$5000: 3A001.a (except a.1.a and a.5.a when controlled for MT), b.4 to b.7, and b.12.
GBS: Yes for 3A001.a.1.b, a.2 to a.14 (except a.5.a when controlled for MT), b.2 (exported or reexported for use in civil telecommunications applications), b.8 (except for vacuum electronic device amplifiers exceeding 18 GHz), b.9, b.10, .g, .h, and .i.

Special Conditions for STA

STA: License Exception STA may not be used to ship any item in 3A001.b.2 or b.3, except those that are being exported or reexported for use in civil telecommunications applications, to any of the destinations listed in Country Group A:5 or A:6 (See Supplement No.1 to part 740 of the EAR).

List of Items Controlled

Related Controls: (1) See Category XV of the USML for certain “space-qualified” electronics and Category XI of the USML for certain ASICs, ‘transmit/receive modules,’ or ‘transmit modules’ “subject to the ITAR” (see 22 CFR parts 120 through 130). (2) See also 3A101, 3A201, 3A611, 3A991, and 9A515.

Related Definitions: ‘Microcircuit’ means a device in which a number of passive or active elements are considered as indivisibly associated on or within a continuous structure to perform the function of a circuit. For the purposes of integrated circuits in 3A001.a.1, 5 x 10³ Gy (Si) = 5 x 10⁵ Rads (Si); 5 x 10⁶ Gy (Si)/s = 5 x 10⁸ Rads (Si)/s.

Items:
a. General purpose integrated circuits, as follows:

Note 1: The control status of wafers (finished or unfinished), in which the function has been determined, is to be evaluated against the parameters of 3A001.a.

Note 2: Integrated circuits include the following types:

- “Monolithic integrated circuits”;
- “Hybrid integrated circuits”;
- “Multichip integrated circuits”;
- “Film type integrated circuits”, including silicon-on-sapphire integrated circuits;
- “Optical integrated circuits”;
- “Three dimensional integrated circuits”;
- “Monolithic Microwave Integrated Circuits” (“MMICs”).

a.1. Integrated circuits designed or rated as radiation hardened to withstand any of the following:

a.1.a. A total dose of 5 x 10³ Gy (Si), or higher;
a.1.b. A dose rate upset of 5 x 10⁶ Gy (Si)/s, or higher; or

a.1.c. A fluence (integrated flux) of neutrons (1 MeV equivalent) of 5 x 10¹³ n/cm² or higher on silicon, or its equivalent for other materials;

Note: 3A001.a.1.c does not apply to Metal Insulator Semiconductors (MIS).

a.2. “Microprocessor microcircuits”, “microcomputer microcircuits”, microcontroller microcircuits, storage integrated circuits manufactured from a compound semiconductor, analog-to-digital converters, integrated circuits that contain analog-to-digital converters and store
or process the digitized data, digital-to-analog converters, electro-optical or "optical integrated circuits" designed for "signal processing", field programmable logic devices, custom integrated circuits for which either the function is unknown or the control status of the equipment in which the integrated circuit will be used is unknown, Fast Fourier Transform (FFT) processors, Static Random-Access Memories (SRAMs), or "non-volatile memories," having any of the following:

Technical Note: ‘Non-volatile memories’ are memories with data retention over a period of time after a power shutdown.

a.2.a. Rated for operation at an ambient temperature above 398 K (125°C);

a.2.b. Rated for operation at an ambient temperature below 218 K (-55°C); or

a.2.c. Rated for operation over the entire ambient temperature range from 218 K (-55°C) to 398 K (125°C);

Note: 3A001.a.2 does not apply to integrated circuits for civil automobile or railway train applications.

a.3. “Microprocessor microcircuits”, “microcomputer microcircuits” and microcontroller microcircuits, manufactured from a compound semiconductor and operating at a clock frequency exceeding 40 MHz;

Note: 3A001.a.3 includes digital signal processors, digital array processors and digital coprocessors.

a.4. [Reserved]

a.5. Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) integrated circuits, as follows:

a.5.a. ADCs having any of the following:

a.5.a.1. A resolution of 8 bit or more, but less than 10 bit, with a “sample rate” greater than 1.3 Giga Samples Per Second (GSPS);

a.5.a.2. A resolution of 10 bit or more, but less than 12 bit, with a “sample rate” greater than 600 Mega Samples Per Second (MSPS);

a.5.a.3. A resolution of 12 bit or more, but less than 14 bit, with a “sample rate” greater than 400 MSPS;

a.5.a.4. A resolution of 14 bit or more, but less than 16 bit, with a “sample rate” greater than 250 MSPS; or

a.5.a.5. A resolution of 16 bit or more with a “sample rate” greater than 65 MSPS;

N.B.: For integrated circuits that contain analog-to-digital converters and store or process the digitized data see 3A001.a.14.

Technical Notes:

1. A resolution of n bit corresponds to a quantization of 2^n levels.

2. The resolution of the ADC is the number of bits of the digital output that represents the measured analog input. Effective Number of Bits (ENOB) is not used to determine the resolution of the ADC.

3. For “multiple channel ADCs”, the “sample rate” is not aggregated and the “sample rate” is the maximum rate of any single channel.

4. For “interleaved ADCs” or for “multiple channel ADCs” that are specified to have an interleaved mode of operation, the “sample rates” are aggregated and the “sample rate” is the maximum combined total rate of all of the interleaved channels.
a.5.b.1. A resolution of 10 bit or more with an ‘adjusted update rate’ of greater than 3,500 MSPS; or

a.5.b.2. A resolution of 12-bit or more with an ‘adjusted update rate’ of greater than 1,250 MSPS and having any of the following:

a.5.b.2.a. A settling time less than 9 ns to arrive at or within 0.024 % of full scale from a full scale step; or

a.5.b.2.b. A ‘Spurious Free Dynamic Range’ (SFDR) greater than 68 dBc (carrier) when synthesizing a full scale analog signal of 100 MHz or the highest full scale analog signal frequency specified below 100 MHz.

Technical Notes

1. ‘Spurious Free Dynamic Range’ (SFDR) is defined as the ratio of the RMS value of the carrier frequency (maximum signal component) at the input of the DAC to the RMS value of the next largest noise or harmonic distortion component at its output.

2. SFDR is determined directly from the specification table or from the characterization plots of SFDR versus frequency.

3. A signal is defined to be full scale when its amplitude is greater than -3 dBfs (full scale).

4. ‘Adjusted update rate’ for DACs is:

 a. For conventional (non-interpolating) DACs, the ‘adjusted update rate’ is the rate at which the digital signal is converted to an analog signal and the output analog values are changed by the DAC. For DACs where the interpolation mode may be bypassed (interpolation factor of one), the DAC should be considered as a conventional (non-interpolating) DAC.

 b. For interpolating DACs (oversampling DACs), the ‘adjusted update rate’ is defined as the DAC update rate divided by the smallest interpolating factor. For interpolating DACs, the ‘adjusted update rate’ may be referred to by different terms including:

 - input data rate
 - input word rate
 - input sample rate
 - maximum total input bus rate
 - maximum DAC clock rate for DAC clock input.

a.6. Electro-optical and “optical integrated circuits”, designed for “signal processing” and having all of the following:

a.6.a. One or more than one internal “laser” diode;

a.6.b. One or more than one internal light detecting element; and

a.6.c. Optical waveguides;

a.7. ‘Field programmable logic devices’ having any of the following:

a.7.a. A maximum number of single-ended digital input/outputs of greater than 700; or

a.7.b. An ‘aggregate one-way peak serial transceiver data rate’ of 500 Gb/s or greater;

Note: 3A001.a.7 includes:

- Complex Programmable Logic Devices (CPLDs)

- Field Programmable Gate Arrays (FPGAs)

- Field Programmable Logic Arrays (FPLAs)

- Field Programmable Interconnects (FPICs)

N.B.: For integrated circuits having field programmable logic devices that are combined with an analog-to-digital converter, see 3A001.a.14.
Technical Notes:

1. Maximum number of digital input/outputs in 3A001.a.7.a is also referred to as maximum user input/outputs or maximum available input/outputs, whether the integrated circuit is packaged or bare die.

2. ‘Aggregate one-way peak serial transceiver data rate’ is the product of the peak serial one-way transceiver data rate times the number of transceivers on the FPGA.

a.8. [Reserved]

a.9. Neural network integrated circuits;

a.10. Custom integrated circuits for which the function is unknown, or the control status of the equipment in which the integrated circuits will be used is unknown to the manufacturer, having any of the following:

 a.10.a. More than 1,500 terminals;

 a.10.b. A typical “basic gate propagation delay time” of less than 0.02 ns; or

 a.10.c. An operating frequency exceeding 3 GHz;

a.11. Digital integrated circuits, other than those described in 3A001.a.3 to 3A001.a.10 and 3A001.a.12, based upon any compound semiconductor and having any of the following:

 a.11.a. An equivalent gate count of more than 3,000 (2 input gates); or

 a.11.b. A toggle frequency exceeding 1.2 GHz;

a.12. Fast Fourier Transform (FFT) processors having a rated execution time for an N-point complex FFT of less than (N log₂ N)/20,480 ms, where N is the number of points;

Technical Note: When N is equal to 1,024 points, the formula in 3A001.a.12 gives an execution time of 500 µs.

a.13. Direct Digital Synthesizer (DDS) integrated circuits having any of the following:

 a.13.a. A Digital-to-Analog Converter (DAC) clock frequency of 3.5 GHz or more and a DAC resolution of 10 bit or more, but less than 12 bit; or

 a.13.b. A DAC clock frequency of 1.25 GHz or more and a DAC resolution of 12 bit or more;

Technical Note: The DAC clock frequency may be specified as the master clock frequency or the input clock frequency.

a.14. Integrated circuits that perform or are programmable to perform all of the following:

 a.14.a. Analog-to-digital conversions meeting any of the following:

 a.14.a.1. A resolution of 8 bit or more, but less than 10 bit, with a “sample rate” greater than 1.3 Giga Samples Per Second (GSPS);

 a.14.a.2. A resolution of 10 bit or more, but less than 12 bit, with a “sample rate” greater than 1.0 GSPS;

 a.14.a.3. A resolution of 12 bit or more, but less than 14 bit, with a “sample rate” greater than 1.0 GSPS;

 a.14.a.4. A resolution of 14 bit or more, but less than 16 bit, with a “sample rate” greater than 400 Mega Samples Per Second (MSPS); or

 a.14.a.5. A resolution of 16 bit or more with a “sample rate” greater than 180 MSPS; and

 a.14.b. Any of the following:

 a.14.b.1. Storage of digitized data; or
a.14.b.2. Processing of digitized data;

N.B. 1: For analog-to-digital converter integrated circuits see 3A001.a.5.a.

N.B. 2: For field programmable logic devices see 3A001.a.7.

Technical Notes:

1. A resolution of n bit corresponds to a quantization of \(2^n\) levels.
2. The resolution of the ADC is the number of bits of the digital output of the ADC that represents the measured analog input. Effective Number of Bits (ENOB) is not used to determine the resolution of the ADC.
3. For integrated circuits with non-interleaving “multiple channel ADCs”, the “sample rate” is not aggregated and the “sample rate” is the maximum rate of any single channel.
4. For integrated circuits with “interleaved ADCs” or with “multiple channel ADCs” that are specified to have an interleaved mode of operation, the “sample rates” are aggregated and the “sample rate” is the maximum combined total rate of all of the interleaved channels.

b. Microwave or millimeter wave items, as follows:

Technical Notes:

1. For purposes of 3A001.b, the parameter peak saturated power output may also be referred to on product data sheets as output power, saturated power output, maximum power output, peak power output, or peak envelope power output.

2. For purposes of 3A001.b.1, ‘vacuum electronic devices’ are electronic devices based on the interaction of an electron beam with an electromagnetic wave propagating in a vacuum circuit or interacting with radio-frequency vacuum cavity resonators. ‘Vacuum electronic devices’ include klystrons, traveling-wave tubes, and their derivatives.

b.1. ‘Vacuum electronic devices’ and cathodes, as follows:

Note 1: 3A001.b.1 does not control ‘vacuum electronic devices’ designed or rated for operation in any frequency band and having all of the following:

a. Does not exceed 31.8 GHz; and

b. Is “allocated by the ITU” for radio-communications services, but not for radio-determination.

Note 2: 3A001.b.1 does not control non-“space-qualified” ‘vacuum electronic devices’ having all the following:

a. An average output power equal to or less than 50 W; and

b. Designed or rated for operation in any frequency band and having all of the following:

1. Exceeds 31.8 GHz but does not exceed 43.5 GHz; and

2. Is “allocated by the ITU” for radio-communications services, but not for radio-determination.

b.1.a. Traveling-wave ‘vacuum electronic devices,’ pulsed or continuous wave, as follows:

b.1.a.1. Devices operating at frequencies exceeding 31.8 GHz;

b.1.a.2. Devices having a cathode heater with a turn on time to rated RF power of less than 3 seconds;
b.1.a.3. Coupled cavity devices, or derivatives thereof, with a “fractional bandwidth” of more than 7% or a peak power exceeding 2.5 kW;

b.1.a.4. Devices based on helix, folded waveguide, or serpentine waveguide circuits, or derivatives thereof, having any of the following:

b.1.a.4.a. An “instantaneous bandwidth” of more than one octave, and average power (expressed in kW) times frequency (expressed in GHz) of more than 0.5;

b.1.a.4.b. An “instantaneous bandwidth” of one octave or less, and average power (expressed in kW) times frequency (expressed in GHz) of more than 1;

b.1.a.4.c. Being “space-qualified”; or

b.1.a.4.d. Having a gridded electron gun;

b.1.a.5. Devices with a “fractional bandwidth” greater than or equal to 10%, with any of the following:

b.1.a.5.a. An annular electron beam;

b.1.a.5.b. A non-axisymmetric electron beam; or

b.1.a.5.c. Multiple electron beams;

b.1.b. Crossed-field amplifier ‘vacuum electronic devices’ with a gain of more than 17 dB;

b.1.c. Thermionic cathodes, designed for ‘vacuum electronic devices,’ producing an emission current density at rated operating conditions exceeding 5 A/cm² or a pulsed (non-continuous) current density at rated operating conditions exceeding 10 A/cm²;

b.1.d. ‘Vacuum electronic devices’ with the capability to operate in a ‘dual mode.’

Technical Note: ‘Dual mode’ means the ‘vacuum electronic device’ beam current can be intentionally changed between continuous-wave and pulsed mode operation by use of a grid and produces a peak pulse output power greater than the continuous-wave output power.

b.2. “Monolithic Microwave Integrated Circuit” (“MMIC”) amplifiers that are any of the following:

b.2.a. Rated for operation at frequencies exceeding 2.7 GHz up to and including 6.8 GHz with a “fractional bandwidth” greater than 15%, and having any of the following:

b.2.a.1. A peak saturated power output greater than 75 W (48.75 dBm) at any frequency exceeding 2.7 GHz up to and including 2.9 GHz;

b.2.a.2. A peak saturated power output greater than 55 W (47.4 dBm) at any frequency exceeding 2.9 GHz up to and including 3.2 GHz;

b.2.a.3. A peak saturated power output greater than 40 W (46 dBm) at any frequency exceeding 3.2 GHz up to and including 3.7 GHz; or

b.2.a.4. A peak saturated power output greater than 20 W (43 dBm) at any frequency exceeding 3.7 GHz up to and including 6.8 GHz;

b.2.b. Rated for operation at frequencies exceeding 6.8 GHz up to and including 16 GHz with a “fractional bandwidth” greater than 10%, and having any of the following:

b.2.b.1. A peak saturated power output greater than 10 W (40 dBm) at any frequency exceeding 6.8 GHz up to and including 8.5 GHz; or

b.2.b.2. A peak saturated power output greater than 25 W (41.25 dBm) at any frequency exceeding 8.5 GHz up to and including 10 GHz; or

b.2.b.3. A peak saturated power output greater than 50 W (42.0 dBm) at any frequency exceeding 10 GHz up to and including 14 GHz; or

b.2.b.4. A peak saturated power output greater than 100 W (43.75 dBm) at any frequency exceeding 14 GHz up to and including 16 GHz.

N.B.: For “MMIC” amplifiers that have an integrated phase shifter see 3A001.b.12.
b.2.b.2. A peak saturated power output greater than 5 W (37 dBm) at any frequency exceeding 8.5 GHz up to and including 16 GHz;

b.2.c. Rated for operation with a peak saturated power output greater than 3 W (34.77 dBm) at any frequency exceeding 16 GHz up to and including 31.8 GHz, and with a “fractional bandwidth” of greater than 10%;

b.2.d. Rated for operation with a peak saturated power output greater than 0.1n W (-70 dBm) at any frequency exceeding 31.8 GHz up to and including 37 GHz;

b.2.e. Rated for operation with a peak saturated power output greater than 1 W (30 dBm) at any frequency exceeding 37 GHz up to and including 43.5 GHz, and with a “fractional bandwidth” of greater than 10%;

b.2.f. Rated for operation with a peak saturated power output greater than 31.62 mW (15 dBm) at any frequency exceeding 43.5 GHz up to and including 75 GHz, and with a “fractional bandwidth” of greater than 10%;

b.2.g. Rated for operation with a peak saturated power output greater than 1 mW (10 dBm) at any frequency exceeding 75 GHz up to and including 90 GHz, and with a “fractional bandwidth” of greater than 5%; or

b.2.h. Rated for operation with a peak saturated power output greater than 0.1 nW (-70 dBm) at any frequency exceeding 90 GHz;

Note 1: [Reserved]

Note 2: The control status of the “MMIC” whose rated operating frequency includes frequencies listed in more than one frequency range, as defined by 3A001.b.2.a through 3A001.b.2.h, is determined by the lowest peak saturated power output control threshold.

Note 3: Notes 1 and 2 following the Category 3 heading for product group A. Systems, Equipment, and Components mean that 3A001.b.2 does not control “MMICs” if they are “specially designed” for other applications, e.g., telecommunications, radar, automobiles.

b.3. Discrete microwave transistors that are any of the following:

b.3.a. Rated for operation at frequencies exceeding 2.7 GHz up to and including 6.8 GHz and having any of the following:

b.3.a.1. A peak saturated power output greater than 400 W (56 dBm) at any frequency exceeding 2.7 GHz up to and including 2.9 GHz;

b.3.a.2. A peak saturated power output greater than 205 W (53.12 dBm) at any frequency exceeding 2.9 GHz up to and including 3.2 GHz;

b.3.a.3. A peak saturated power output greater than 115 W (50.61 dBm) at any frequency exceeding 3.2 GHz up to and including 3.7 GHz; or

b.3.a.4. A peak saturated power output greater than 60 W (47.78 dBm) at any frequency exceeding 3.7 GHz up to and including 6.8 GHz;

b.3.b. Rated for operation at frequencies exceeding 6.8 GHz up to and including 31.8 GHz and having any of the following:

b.3.b.1. A peak saturated power output greater than 50 W (47 dBm) at any frequency exceeding 6.8 GHz up to and including 8.5 GHz;

b.3.b.2. A peak saturated power output greater than 15 W (41.76 dBm) at any frequency exceeding 8.5 GHz up to and including 12 GHz;

b.3.b.3. A peak saturated power output greater than 40 W (46 dBm) at any frequency
exceeding 12 GHz up to and including 16 GHz; or

b.3.b.4. A peak saturated power output greater than 7 W (38.45 dBm) at any frequency exceeding 16 GHz up to and including 31.8 GHz;

b.3.c. Rated for operation with a peak saturated power output greater than 0.5 W (27 dBm) at any frequency exceeding 31.8 GHz up to and including 37 GHz;

b.3.d. Rated for operation with a peak saturated power output greater than 1 W (30 dBm) at any frequency exceeding 37 GHz up to and including 43.5 GHz; or

b.3.e. Rated for operation with a peak saturated power output greater than 0.1 nW (-70 dBm) at any frequency exceeding 43.5 GHz; or

b.3.f. Other than those specified by 3A001.b.3.a to 3A001.b.3.e and rated for operation with a peak saturated power output greater than 5 W (37.0 dBm) at all frequencies exceeding 8.5 GHz up to and including 31.8 GHz;

b.4.a. Rated for operation at frequencies exceeding 2.7 GHz up to and including 6.8 GHz with a “fractional bandwidth” greater than 15%, and having any of the following:

b.4.a.1. A peak saturated power output greater than 500 W (57 dBm) at any frequency exceeding 2.7 GHz up to and including 2.9 GHz;

b.4.a.2. A peak saturated power output greater than 270 W (54.3 dBm) at any frequency exceeding 2.9 GHz up to and including 3.2 GHz;

b.4.a.3. A peak saturated power output greater than 200 W (53 dBm) at any frequency exceeding 3.2 GHz up to and including 3.7 GHz; or

b.4.a.4. A peak saturated power output greater than 90 W (49.54 dBm) at any frequency exceeding 3.7 GHz up to and including 6.8 GHz;

b.4.b. Rated for operation at frequencies exceeding 6.8 GHz up to and including 31.8 GHz with a “fractional bandwidth” greater than 10%, and having any of the following:

b.4.b.1. A peak saturated power output greater than 70 W (48.54 dBm) at any frequency exceeding 6.8 GHz up to and including 8.5 GHz;

b.4.b.2. A peak saturated power output greater than 50 W (47 dBm) at any frequency exceeding 8.5 GHz up to and including 12 GHz;

b.4.b.3. A peak saturated power output greater than 30 W (44.77 dBm) at any frequency exceeding 12 GHz up to and including 16 GHz; or

b.4.b.4. A peak saturated power output greater than 20 W (43 dBm) at any frequency exceeding 16 GHz up to and including 31.8 GHz;

b.4.c. Rated for operation with a peak saturated power output greater than 0.5 W (27 dBm) at any frequency exceeding 37 GHz up to and including 43.5 GHz.

Note 1: The control status of a transistor in 3A001.b.3.a through 3A001.b.3.e, whose rated operating frequency includes frequencies listed in more than one frequency range, as defined by 3A001.b.3.a through 3A001.b.3.e, is determined by the lowest peak saturated power output control threshold.

Note 2: 3A001.b.3 includes bare dice, dice mounted on carriers, or dice mounted in packages. Some discrete transistors may also be referred to as power amplifiers, but the status of these discrete transistors is determined by 3A001.b.3.

b.4. Microwave solid state amplifiers and microwave assemblies/modules containing microwave solid state amplifiers, that are any of the following:
(dBm) at any frequency exceeding 31.8 GHz up to and including 37 GHz;

b.4.d. Rated for operation with a peak saturated power output greater than 2 W (33 dBm) at any frequency exceeding 37 GHz up to and including 43.5 GHz, and with a “fractional bandwidth” of greater than 10%;

b.4.e. Rated for operation at frequencies exceeding 43.5 GHz and having any of the following:

b.4.e.1. A peak saturated power output greater than 0.2 W (23 dBm) at any frequency exceeding 43.5 GHz up to and including 75 GHz, and with a “fractional bandwidth” of greater than 10%;

b.4.e.2. A peak saturated power output greater than 20 mW (13 dBm) at any frequency exceeding 75 GHz up to and including 90 GHz, and with a “fractional bandwidth” of greater than 5%; or

b.4.e.3. A peak saturated power output greater than 0.1 nW (-70 dBm) at any frequency exceeding 90 GHz; or

b.4.f. [Reserved]

N.B.:

1. For “MMIC” amplifiers see 3A001.b.2.

2. For ‘transmit/receive modules’ and ‘transmit modules’ see 3A001.b.12.

3. For converters and harmonic mixers, designed to extend the operating or frequency range of signal analyzers, signal generators, network analyzers or microwave test receivers, see 3A001.b.7.

Note 1: [Reserved]

Note 2: The control status of an item whose rated operating frequency includes frequencies listed in more than one frequency range, as defined by 3A001.b.4.a through 3A001.b.4.e, is determined by the lowest peak saturated power output control threshold.

b.5. Electronically or magnetically tunable band-pass or band-stop filters, having more than 5 tunable resonators capable of tuning across a 1.5:1 frequency band (f_max/f_min) in less than 10 µs and having any of the following:

b.5.a. A band-pass bandwidth of more than 0.5% of center frequency; or

b.5.b. A band-stop bandwidth of less than 0.5% of center frequency;

b.6. [Reserved]

b.7. Converters and harmonic mixers, that are any of the following:

b.7.a. Designed to extend the frequency range of “signal analyzers” beyond 90 GHz;

b.7.b. Designed to extend the operating range of signal generators as follows:

b.7.b.1. Beyond 90 GHz;

b.7.b.2. To an output power greater than 100 mW (20 dBm) anywhere within the frequency range exceeding 43.5 GHz but not exceeding 90 GHz;

b.7.c. Designed to extend the operating range of network analyzers as follows:

b.7.c.1. Beyond 110 GHz;

b.7.c.2. To an output power greater than 31.62 mW (15 dBm) anywhere within the frequency range exceeding 43.5 GHz but not exceeding 90 GHz;

b.7.c.3. To an output power greater than 1 mW (0 dBm) anywhere within the frequency
range exceeding 90 GHz but not exceeding 110
GHz; or

b.7.d. Designed to extend the frequency
range of microwave test receivers beyond 110
GHz;

b.8. Microwave power amplifiers containing
‘vacuum electronic devices’ controlled by
3A001.b.1 and having all of the following:

b.8.a. Operating frequencies above 3 GHz;

b.8.b. An average output power to mass ratio
exceeding 80 W/kg; and

b.8.c. A volume of less than 400 cm³;

Note: 3A001.b.8 does not control equipment
designed or rated for operation in any frequency
band which is “allocated by the ITU” for radio-
communications services, but not for radio-
determination.

b.9. Microwave Power Modules (MPM)
consisting of, at least, a traveling-wave ‘vacuum
electronic device,’ a “Monolithic Microwave
Integrated Circuit” (“MMIC”) and an integrated
electronic power conditioner and having all of the
following:

b.9.a. A ‘turn-on time’ from off to fully
operational in less than 10 seconds;

b.9.b. A volume less than the maximum rated
power in Watts multiplied by 10 cm³/W; and

b.9.c. An “instantaneous bandwidth” greater
than 1 octave (fₘₐₓ > 2fₘᵢₙ) and having any of the
following:

b.9.c.1. For frequencies equal to or less than
18 GHz, an RF output power greater than 100 W;
or

b.9.c.2. A frequency greater than 18 GHz;

Technical Notes:

1. To calculate the volume in 3A001.b.9.b,
the following example is provided: for a
maximum rated power of 20 W, the volume
would be: 20 W X 10 cm³/W = 200 cm³.

2. The 'turn-on time' in 3A001.b.9.a refers
to the time from fully-off to fully operational,
i.e., it includes the warm-up time of the MPM.

b.10. Oscillators or oscillator assemblies,
specified to operate with a single sideband (SSB)
phase noise, in dBc/Hz, less (better) than -(126 +
20log₁₀F - 20log₁₀f) anywhere within the range of
10 Hz ≤ F ≤ 10 kHz;

Technical Note: In 3A001.b.10, F is the offset
from the operating frequency in Hz and f is the
operating frequency in MHz.

b.11. ‘Frequency synthesizer’ “electronic
assemblies” having a “frequency switching time”
as specified by any of the following:

b.11.a. Less than 143 ps;

b.11.b. Less than 100 µs for any
frequency change exceeding 2.2 GHz within the
synthesized frequency range exceeding 4.8 GHz
but not exceeding 31.8 GHz;

b.11.c. [Reserved]

b.11.d. Less than 500 µs for any frequency
change exceeding 550 MHz within the
synthesized frequency range exceeding 31.8 GHz
but not exceeding 37 GHz; or

b.11.e. Less than 100 µs for any frequency
change exceeding 2.2 GHz within the
synthesized frequency range exceeding 37 GHz
but not exceeding 90 GHz; or

b.11.f. [Reserved]

b.11.g. Less than 1 ms within the synthesized
frequency range exceeding 90 GHz;
Technical Note: A 'frequency synthesizer' is any kind of frequency source, regardless of the actual technique used, providing a multiplicity of simultaneous or alternative output frequencies, from one or more outputs, controlled by, derived from or disciplined by a lesser number of standard (or master) frequencies.

N.B.: For general purpose “signal analyzers”, signal generators, network analyzers and microwave test receivers, see 3A002.c, 3A002.d, 3A002.e and 3A002.f, respectively.

b.12. ‘Transmit/receive modules,’ ‘transmit/receive MMICs,’ ‘transmit modules,’ and ‘transmit MMICs,’ rated for operation at frequencies above 2.7 GHz and having all of the following:

b.12.a. A peak saturated power output (in watts), P_{sat}, greater than 505.62 divided by the maximum operating frequency (in GHz) squared [$P_{\text{sat}} > \frac{505.62 \text{ W} \cdot \text{GHz}^2}{f_{\text{GHz}}^2}$] for any channel;

b.12.b. A “fractional bandwidth” of 5% or greater for any channel;

b.12.c. Any planar side with length d (in cm) equal to or less than 15 divided by the lowest operating frequency in GHz [$d \leq \frac{15 \text{ cm} \cdot \text{GHz} \cdot N}{f_{\text{GHz}}}$] where N is the number of transmit or transmit/receive channels; and

b.12.d. An electronically variable phase shifter per channel.

Technical Notes:

1. A ‘transmit/receive module’ is a multifunction “electronic assembly” that provides bi-directional amplitude and phase control for transmission and reception of signals.

2. A ‘transmit module’ is an “electronic assembly” that provides amplitude and phase control for transmission of signals.

3. A ‘transmit/receive MMIC’ is a multifunction “MMIC” that provides bi-directional amplitude and phase control for transmission and reception of signals.

4. A ‘transmit MMIC’ is a “MMIC” that provides amplitude and phase control for transmission of signals.

5. 2.7 GHz should be used as the lowest operating frequency (f_{GHz}) in the formula in 3A001.b.12.c for transmit/receive or transmit modules that have a rated operation range extending downward to 2.7 GHz and below [$d \leq \frac{15 \text{ cm} \cdot \text{GHz} \cdot N}{2.7 \text{ GHz}}$].

6. 3A001.b.12 applies to ‘transmit/receive modules’ or ‘transmit modules’ with or without a heat sink. The value of d in 3A001.b.12.c does not include any portion of the ‘transmit/receive module’ or ‘transmit module’ that functions as a heat sink.

7. ‘Transmit/receive modules’ or ‘transmit modules,’ ‘transmit/receive MMICs’ or ‘transmit MMICs’ may or may not have N integrated radiating antenna elements where N is the number of transmit or transmit/receive channels.

c. Acoustic wave devices as follows and “specially designed” “components” therefor:

c.1. Surface acoustic wave and surface skimming (shallow bulk) acoustic wave devices, having any of the following:

 c.1.a. A carrier frequency exceeding 6 GHz;

 c.1.b. A carrier frequency exceeding 1 GHz, but not exceeding 6 GHz and having any of the following:

 c.1.b.1. A ‘frequency side-lobe rejection’ exceeding 65 dB;

 c.1.b.2. A product of the maximum delay time and the bandwidth (time in μs and bandwidth in MHz) of more than 100;
c.1.b.3. A bandwidth greater than 250 MHz; or
c.1.b.4. A dispersive delay of more than 10 µs; or
c.1.c. A carrier frequency of 1 GHz or less and having any of the following:
c.1.c.1. A product of the maximum delay time and the bandwidth (time in µs and bandwidth in MHz) of more than 100;
c.1.c.2. A dispersive delay of more than 10 µs; or
c.1.c.3. A ‘frequency side-lobe rejection’ exceeding 65 dB and a bandwidth greater than 100 MHz;

Technical Note: ‘Frequency side-lobe rejection’ is the maximum rejection value specified in data sheet.
c.2. Bulk (volume) acoustic wave devices that permit the direct processing of signals at frequencies exceeding 6 GHz;
c.3. Acoustic-optic “signal processing” devices employing interaction between acoustic waves (bulk wave or surface wave) and light waves that permit the direct processing of signals or images, including spectral analysis, correlation or convolution;

Note: 3A001.c does not control acoustic wave devices that are limited to a single band pass, low pass, high pass or notch filtering, or resonating function.
d. Electronic devices and circuits containing “components”, manufactured from “superconductive” materials, “specially designed” for operation at temperatures below the “critical temperature” of at least one of the “superconductive” constituents and having any of the following:
d.1. Current switching for digital circuits using “superconductive” gates with a product of delay time per gate (in seconds) and power dissipation per gate (in watts) of less than 10^{-14} J; or
d.2. Frequency selection at all frequencies using resonant circuits with Q-values exceeding 10,000;
e. High energy devices as follows:
e.1. ‘Cells’ as follows:
e.1.a. ‘Primary cells’ having any of the following at 20°C:
e.1.a.1. ‘Energy density’ exceeding 550 Wh/kg and a ‘continuous power density’ exceeding 50 W/kg; or
e.1.a.2. ‘Energy density’ exceeding 50 Wh/kg and a ‘continuous power density’ exceeding 350 W/kg;
e.1.b. ‘Secondary cells’ having an ‘energy density’ exceeding 350 Wh/kg at 293 K (20°C);

Technical Notes:

1. For the purpose of 3A001.e.1, ‘energy density’ (Wh/kg) is calculated from the nominal voltage multiplied by the nominal capacity in ampere-hours (Ah) divided by the mass in kilograms. If the nominal capacity is not stated, energy density is calculated from the nominal voltage squared then multiplied by the discharge duration in hours divided by the discharge load in Ohms and the mass in kilograms.

2. For the purpose of 3A001.e.1, a ‘cell’ is defined as an electrochemical device, which has positive and negative electrodes, an electrolyte, and is a source of electrical energy. It is the basic building block of a battery.
3. For the purpose of 3A001.e.1.a, a ‘primary cell’ is a ‘cell’ that is not designed to be charged by any other source.

4. For the purpose of 3A001.e.1.b, a ‘secondary cell’ is a ‘cell’ that is designed to be charged by an external electrical source.

5. For the purpose of 3A001.e.1.a, ‘continuous power density’ (W/kg) is calculated from the nominal voltage multiplied by the specified maximum continuous discharge current in ampere (A) divided by the mass in kilograms. ‘Continuous power density’ is also referred to as specific power.

Note: 3A001.e does not control batteries, including single-cell batteries.

e.2. High energy storage capacitors as follows:

e.2.a. Capacitors with a repetition rate of less than 10 Hz (single shot capacitors) and having all of the following:

 e.2.a.1. A voltage rating equal to or more than 5 kV;

 e.2.a.2. An energy density equal to or more than 250 J/kg; and

 e.2.a.3. A total energy equal to or more than 25 kJ;

 e.2.b. Capacitors with a repetition rate of 10 Hz or more (repetition rated capacitors) and having all of the following:

 e.2.b.1. A voltage rating equal to or more than 5 kV;

 e.2.b.2. An energy density equal to or more than 50 J/kg;

 e.2.b.3. A total energy equal to or more than 100 J; and

 e.2.b.4. A charge/discharge cycle life equal to or more than 10,000;

e.3. “Superconductive” electromagnets and solenoids, “specially designed” to be fully charged or discharged in less than one second and having all of the following:

 e.3.a. Energy delivered during the discharge exceeding 10 kJ in the first second;

 e.3.b. Inner diameter of the current carrying windings of more than 250 mm; and

 e.3.c. Rated for a magnetic induction of more than 8 T or “overall current density” in the winding of more than 300 A/mm²;

e.4. Solar cells, cell-interconnect-coverglass (CIC) assemblies, solar panels, and solar arrays, which are “space-qualified”, having a minimum average efficiency exceeding 20% at an operating temperature of 301 K (28ºC) under simulated ‘AM0’ illumination with an irradiance of 1,367 Watts per square meter (W/m²);

Technical Note: ‘AM0,’ or ‘Air Mass Zero,’ refers to the spectral irradiance of sun light in the earth’s outer atmosphere when the distance between the earth and sun is one astronomical unit (AU).

f. Rotary input type absolute position encoders having an “accuracy” equal to or less (better) than ± 1.0 second of arc and “specially designed” encoder rings, discs or scales therefor;

g. Solid-state pulsed power switching thyristor devices and ‘thyristor modules,’ using either electrically, optically, or electron radiation controlled switch methods and having any of the following:
g.1. A maximum turn-on current rate of rise (di/dt) greater than 30,000 A/µs and off-state voltage greater than 1,100 V; or

h.3. Continuous current greater than 1 A.

Technical Note: For the purposes of 3A001.h, ‘modules’ contain one or more solid-state power semiconductor switches or diodes.

Note 1: Repetitive peak off-state voltage in 3A001.h includes drain to source voltage, collector to emitter voltage, repetitive peak reverse voltage and peak repetitive off-state blocking voltage.

Note 2: 3A001.h includes:

- Junction Field Effect Transistors (JFETs)
- Vertical Junction Field Effect Transistors (VJFETs)
- Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
- Double Diffused Metal Oxide Semiconductor Field Effect Transistor (DMOSFET)
- Insulated Gate Bipolar Transistor (IGBT)
- High Electron Mobility Transistors (HEMTs)
- Bipolar Junction Transistors (BJTs)
- Thyristors and Silicon Controlled Rectifiers (SCRs)
- Gate Turn-Off Thyristors (GTOs)
- Emitter Turn-Off Thyristors (ETO)
- PiN Diodes
- Schottky Diodes

Note 3: 3A001.h does not apply to switches, diodes, or ‘modules’, incorporated into...
equipment designed for civil automobile, civil railway, or "civil aircraft" applications.

i. Intensity, amplitude, or phase electro-optic modulators, designed for analog signals and having any of the following:

i.1. A maximum operating frequency of more than 10 GHz but less than 20 GHz, an optical insertion loss equal to or less than 3 dB and having any of the following:

i.1.a. A ‘half-wave voltage’ (‘Vπ’) less than 2.7 V when measured at a frequency of 1 GHz or below; or

i.1.b. A ‘Vπ’ of less than 4 V when measured at a frequency of more than 1 GHz; or

i.2. A maximum operating frequency equal to or greater than 20 GHz, an optical insertion loss equal to or less than 3 dB and having any of the following:

i.2.a. A ‘Vπ’ less than 3.3 V when measured at a frequency of 1 GHz or below; or

i.2.b. A ‘Vπ’ less than 5 V when measured at a frequency of more than 1 GHz.

Note: 3A001.i includes electro-optic modulators having optical input and output connectors (e.g., fiber-optic pigtails).

Technical Note: For the purposes of 3A001.i, a ‘half-wave voltage’ (‘Vπ’) is the applied voltage necessary to make a phase change of 180 degrees in the wavelength of light propagating through the optical modulator.

3A002 General purpose “electronic assemblies,” modules and equipment, as follows (see List of Items Controlled).

License Requirements

a. Recording equipment and oscilloscopes, as

Reason for Control: NS, MT, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>MT applies to 3A002.h when the parameters in 3A101.a.2.b are met or exceeded</td>
<td>MT Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

Reporting Requirements: See §743.1 of the EAR for reporting requirements for exports under License Exceptions, and Validated End-User authorizations.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

- **LVS:** $3000: 3A002.a, .e, .f, and .g
 $5000: 3A002.c to .d, and .h (unless controlled for MT);
- **GBS:** Yes, for 3A002.h (unless controlled for MT)

Special Conditions for STA

- **STA:** License Exception STA may not be used to ship any item in 3A002.g.1 to any of the destinations listed in Country Group A:6 (See Supplement No.1 to part 740 of the EAR).

List of Items Controlled

Related Controls: See Category XV(e)(9) of the USML for certain “space-qualified” atomic frequency standards “subject to the ITAR” (see 22 CFR parts 120 through 130). See also 3A101, 3A992 and 9A515.x.

Related Definitions: Constant percentage bandwidth filters are also known as octave or fractional octave filters.

Items:

a. Recording equipment and oscilloscopes, as
follows:

a.1. to a.5. [Reserved]

N.B.: For waveform digitizers and transient recorders, see 3A002.h.

a.6. Digital data recorders having all of the following:

a.6.a. A sustained ‘continuous throughput’ of more than 6.4 Gbit/s to disk or solid-state drive memory; and

a.6.b. A processor that performs analysis of radio frequency signal data while it is being recorded;

Technical Notes:

1. For recorders with a parallel bus architecture, the ‘continuous throughput’ rate is the highest word rate multiplied by the number of bits in a word.

2. ‘Continuous throughput’ is the fastest data rate the instrument can record to disk or solid-state drive memory without the loss of any information while sustaining the input digital data rate or digitizer conversion rate.

a.7. Real-time oscilloscopes having a vertical root-mean-square (rms) noise voltage of less than 2% of full-scale at the vertical scale setting that provides the lowest noise value for any input 3dB bandwidth of 60 GHz or greater per channel;

Note: 3A002.a.7 does not apply to equivalent-time sampling oscilloscopes.

b. [Reserved]

c. “Signal analyzers” as follows:

c.1. “Signal analyzers” having a 3 dB resolution bandwidth (RBW) exceeding 40 MHz anywhere within the frequency range exceeding 31.8 GHz but not exceeding 37 GHz;

c.2. “Signal analyzers” having Displayed Average Noise Level (DANL) less (better than) -150 dBm/Hz anywhere within the frequency range exceeding 43.5 GHz but not exceeding 90 GHz;

c.3. “Signal analyzers” having a frequency exceeding 90 GHz;

c.4. “Signal analyzers” having all of the following:

c.4.a. ‘Real-time bandwidth’ exceeding 170 MHz; and

c.4.b. Having any of the following:

c.4.b.1. 100% probability of discovery, with less than a 3 dB reduction from full amplitude due to gaps or windowing effects, of signals having a duration of 15 µs or less; or

c.4.b.2. A ‘frequency mask trigger’ function, with 100% probability of trigger (capture) for signals having a duration of 15 µs or less;

Technical Notes:

1. ‘Real-time bandwidth’ is the widest frequency range for which the analyzer can continuously transform time-domain data entirely into frequency-domain results, using a Fourier or other discrete time transform that processes every incoming time point, without a reduction of measured amplitude of more than 3 dB below the actual signal amplitude caused by gaps or windowing effects, while outputting or displaying the transformed data.

2. Probability of discovery in 3A002.c.4.b.1 is also referred to as probability of intercept or probability of capture.

3. For the purposes of 3A002.c.4.b.1, the duration for 100% probability of discovery is equivalent to the minimum signal duration
necessary for the specified level measurement uncertainty.

4. A ‘frequency mask trigger’ is a mechanism where the trigger function is able to select a frequency range to be triggered on as a subset of the acquisition bandwidth while ignoring other signals that may also be present within the same acquisition bandwidth. A ‘frequency mask trigger’ may contain more than one independent set of limits.

Note: 3A002.c.4 does not apply to those “signal analyzers” using only constant percentage bandwidth filters (also known as octave or fractional octave filters).

c.5. [RESERVED]

d. Signal generators having any of the following:

 d.1. Specified to generate pulse-modulated signals having all of the following, anywhere within the frequency range exceeding 31.8 GHz but not exceeding 37 GHz:

 d.1.a. ‘Pulse duration’ of less than 25 ns; and

 d.1.b. On/off ratio equal to or exceeding 65 dB;

 d.2. An output power exceeding 100 mW (20 dBm) anywhere within the frequency range exceeding 43.5 GHz but not exceeding 90 GHz;

 d.3. A “frequency switching time” as specified by any of the following:

 d.3.a. [Reserved]

 d.3.b. Less than 100 μs for any frequency change exceeding 2.2 GHz within the frequency range exceeding 4.8 GHz but not exceeding 31.8 GHz;

 d.3.c. [Reserved]

 d.3.d. Less than 500 μs for any frequency change exceeding 550 MHz within the frequency range exceeding 31.8 GHz but not exceeding 37 GHz; or

 d.3.e. Less than 100 μs for any frequency change exceeding 2.2 GHz within the frequency range exceeding 37 GHz but not exceeding 90 GHz;

 d.3.f. [Reserved]

 d.4. Single sideband (SSB) phase noise, in dBc/Hz, specified as being any of the following:

 d.4.a. Less (better) than \(-126 + 20 \log_{10} F - 20 \log_{10} f\) for anywhere within the range of 10 Hz \(\leq F \leq 10\) kHz anywhere within the frequency range exceeding 3.2 GHz but not exceeding 90 GHz; or

 d.4.b. Less (better) than \(-206 - 20 \log_{10} f\) for anywhere within the range of 10 kHz \(< F \leq 100\) kHz anywhere within the frequency range exceeding 3.2 GHz but not exceeding 90 GHz; or

 Technical Note: In 3A002.d.4, \(F\) is the offset from the operating frequency in Hz and \(f\) is the operating frequency in MHz.

 d.5. A maximum frequency exceeding 90 GHz;

 Note 1: For the purpose of 3A002.d, signal generators include arbitrary waveform and function generators.

 Note 2: 3A002.d does not control equipment in which the output frequency is either produced by the addition or subtraction of two or more crystal oscillator frequencies, or by an addition or subtraction followed by a multiplication of the result.

 Technical Notes:

 1. The maximum frequency of an arbitrary waveform or function generator is calculated by dividing the sample rate, in samples/second, by a factor of 2.5.
2. For the purposes of 3A002.d.1.a, ‘pulse duration’ is defined as the time interval from the point on the leading edge that is 50% of the pulse amplitude to the point on the trailing edge that is 50% of the pulse amplitude.

e. Network analyzers having any of the following:

 e.1. An output power exceeding 31.62 mW (15 dBm) anywhere within the operating frequency range exceeding 43.5 GHz but not exceeding 90 GHz;

 e.2. An output power exceeding 1 mW (0 dBm) anywhere within the operating frequency range exceeding 90 GHz but not exceeding 110 GHz;

 e.3. ‘Nonlinear vector measurement functionality’ at frequencies exceeding 50 GHz but not exceeding 110 GHz;

 Technical Note: ‘Nonlinear vector measurement functionality’ is an instrument’s ability to analyze the test results of devices driven into the large-signal domain or the non-linear distortion range.

 e.4. A maximum operating frequency exceeding 110 GHz;

f. Microwave test receivers having all of the following:

 f.1. Maximum operating frequency exceeding 110 GHz; and

 f.2. Being capable of measuring amplitude and phase simultaneously;

 g. Atomic frequency standards being any of the following:

 g.1. “Space-qualified”;

 g.2. Non-rubidium and having a long-term stability less (better) than 1 x 10^{-11}/month; or

 g.3. Non-“space-qualified” and having all of the following:

 g.3.a. Being a rubidium standard;

 g.3.b. Long-term stability less (better) than 1 x 10^{-11}/month; and

 g.3.c. Total power consumption of less than 1 Watt.

h. “Electronic assemblies”, modules or equipment, specified to perform all of the following:

 h.1. Analog-to-digital conversions meeting any of the following:

 h.1.a. A resolution of 8 bit or more, but less than 10 bit, with an input sample rate greater than 1.3 Giga Samples Per Second (GSPS);

 h.1.b. A resolution of 10 bit or more, but less than 12 bit, with an input sample rate greater than 1.0 GSPS;

 h.1.c. A resolution of 12 bit or more, but less than 14 bit, with an input sample rate greater than 1.0 GSPS;

 h.1.d. A resolution of 14 bit or more but less than 16 bit, with an input sample rate greater than 400 Mega Samples Per Second (MSPS); or

 h.1.e. A resolution of 16 bit or more with an input sample rate greater than 180 MSPS; and

 h.2. Any of the following:

 h.2.a. Output of digitized data;

 h.2.b. Storage of digitized data; or

 h.2.c. Processing of digitized data;

 N.B.: Digital data recorders, oscilloscopes, "signal analyzers", signal generators, network analyzers and microwave test receivers, are
specified by 3A002.a.6, 3A002.a.7, 3A002.c, 3A002.d, 3A002.e and 3A002.f, respectively.

Technical Notes:

1. A resolution of \(n \) bit corresponds to a quantization of \(2^n \) levels.

2. The resolution of the ADC is the number of bits in of the digital output of the ADC that represents the measured analog input word. Effective Number of Bits (ENOB) is not used to determine the resolution of the ADC.

3. For non-interleaved multiple-channel “electronic assemblies”, modules, or equipment, the “sample rate” is not aggregated and the “sample rate” is the maximum rate of any single channel.

4. For interleaved channels on multiple-channel “electronic assemblies”, modules, or equipment, the “sample rates” are aggregated and the “sample rate” is the maximum combined total rate of all the interleaved channels.

Note: 3A002.h includes ADC cards, waveform digitizers, data acquisition cards, signal acquisition boards and transient recorders.

List of Items Controlled

3A003 Spray cooling thermal management systems employing closed loop fluid handling and reconditioning equipment in a sealed enclosure where a dielectric fluid is sprayed onto electronic “components” using “specially designed” spray nozzles that are designed to maintain electronic “components” within their operating temperature range, and “specially designed” “components” therefor.

License Requirements

Reason for Control: MT, AT

List Based License Exceptions (See Part 740 for a description of all license exceptions)

- LVS: N/A
- GBS: N/A

List of Items Controlled

Related Controls: N/A

Related Definitions: N/A

Items:

The list of items controlled is contained in the ECCN heading.

3A101 Electronic equipment, devices, “parts” and “components,” other than those controlled by 3A001, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NS, AT

List Based License Exceptions (See Part 740 for a description of all license exceptions)

- LVS: N/A
- GBS: N/A

List of Items Controlled
Related Controls: See also ECCN 3A002.h for controls on analog-to-digital “electronic assemblies,” modules or equipment.

Related Definitions: N/A

Items:

a. Analog-to-digital converters usable in “missiles,” and having any of the following characteristics:

 a.1. “Specially designed” to meet military specifications for ruggedized equipment;

 a.2. “Specially designed” for military use and being any of the following types:

 a.2.a. Analog-to-digital converter microcircuits which are radiation-hardened or have all of the following characteristics:

 a.2.a.1. Rated for operation in the temperature range from below -54°C to above +125°C; and

 a.2.a.2. Hermetically sealed; or

 a.2.b. Electrical input type analog-to-digital converter printed circuit boards or modules, having all of the following characteristics:

 a.2.b.1. Rated for operation in the temperature range from below -45°C to above +80°C; and

 a.2.b.2. Incorporating microcircuits identified in 3A101.a.2.a;

b. Accelerators capable of delivering electromagnetic radiation produced by bremsstrahlung from accelerated electrons of 2 MeV or greater, and systems containing those accelerators, usable for the “missiles” or the subsystems of “missiles”.

Note: 3A101.b above does not include equipment “specially designed” for medical purposes.

3A201 Electronic “parts” and “components,” other than those controlled by 3A001, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: (1) See ECCNs 3E001 (“development” and “production”) and 3E201 (“use”) for technology for items controlled under this entry. (2) Also see 3A001.e.2 (capacitors) and 3A001.e.3 (superconducting electromagnets). (3) Superconducting electromagnets “specially designed” or prepared for use in separating uranium isotopes are subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

Related Definitions: N/A

Items:

a. Pulse discharge capacitors having either of the following sets of characteristics:

 a.1. Voltage rating greater than 1.4 kV, energy storage greater than 10 J, capacitance greater than 0.5 μF, and series inductance less than 50 nH; or
a.2. Voltage rating greater than 750 V, capacitance greater than 0.25 μF, and series inductance less than 10 nH;

b. Superconducting solenoidal electromagnets having all of the following characteristics:

b.1. Capable of creating magnetic fields greater than 2 T;

b.2. A ratio of length to inner diameter greater than 2;

b.3. Inner diameter greater than 300 mm; and

b.4. Magnetic field uniform to better than 1% over the central 50% of the inner volume;

Note: 3A201.b does not control magnets “specially designed” for and exported “as parts of” medical nuclear magnetic resonance (NMR) imaging systems. The phrase “as part of” does not necessarily mean physical part in the same shipment; separate shipments from different sources are allowed, provided the related export documents clearly specify that the shipments are dispatched “as part of” the imaging systems.

c. Flash X-ray generators or pulsed electron accelerators having either of the following sets of characteristics:

c.1. An accelerator peak electron energy of 500 keV or greater, but less than 25 MeV, and with a “figure of merit” (K) of 0.25 or greater; or

c.2. An accelerator peak electron energy of 25 MeV or greater, and a “peak power” greater than 50 MW;

Note: 3A201.c does not control accelerators that are “parts” or “components” of devices designed for purposes other than electron beam or X-ray radiation (electron microscopy, for example) nor those designed for medical purposes.

Technical Notes:

1. The “figure of merit” K is defined as: $K = 1.7 \times 10^3 \frac{V^2}{Q}$. V is the peak electron energy in million electron volts. If the accelerator beam pulse duration is less than or equal to 1 μs, then Q is the total accelerated charge in Coulombs. If the accelerator beam pulse duration is greater than 1 μs, then Q is the maximum accelerated charge in 1 μs. Q equals the integral of i with respect to t, over the lesser of 1 μs or the time duration of the beam pulse ($Q = \int i dt$), where i is beam current in amperes and t is time in seconds.

2. “Peak power” = (peak potential in volts) x (peak beam current in amperes).

3. In machines based on microwave accelerating cavities, the time duration of the beam pulse is the lesser of 1 μs or the duration of the bunched beam packet resulting from one microwave modulator pulse.

4. In machines based on microwave accelerating cavities, the peak beam current is the average current in the time duration of a bunched beam packet.

3A225 Frequency changers (a.k.a. converters or inverters) and generators, except those subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110), that are usable as a variable frequency or fixed frequency motor drive and have all of the characteristics described in this ECCN (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>
List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: (1) See ECCN 3D201 for “software” “specially designed” for the “use” of equipment described in this entry. (2) See ECCN 3D202 for “software” “specially designed” to enhance or release the performance characteristics of frequency changers or generators to meet or exceed the level of the performance characteristics described in this entry. (3) See ECCNs 3E001 (“development” and “production”) and 3E201 (“use”) for technology for items controlled under this entry. (4) Frequency changers (a.k.a. converters or inverters) “specially designed” or prepared for use in separating uranium isotopes are subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

Related Definitions: N/A

Items:

a. Multiphase output providing a power of 40 VA or greater;

b. Operating at a frequency of 600 Hz or more; and

c. Frequency control better (less) than 0.2%.

Notes:

1. This ECCN controls frequency changers intended for use in specific industrial machinery and/or consumer goods (machine tools, vehicles, etc.) only if the frequency changers can meet the performance characteristics described in this entry when removed from the machinery and/or goods. This Note does not exclude from control under this entry any frequency changer described herein that is the principal element of a non-controlled item and can feasibly be removed or used for other purposes.

2. To determine whether a particular frequency changer meets or exceeds the performance characteristics described in this entry, both hardware and “software” performance constraints must be considered.

Technical Notes:

1. Frequency changers controlled by this ECCN are also known as converters or inverters.

2. The performance characteristics described in this ECCN also may be met by certain equipment marketed as: generators, electronic test equipment, AC power supplies, variable speed motor drives, variable speed drives (VSDs), variable frequency drives (VFDs), adjustable frequency drives (AFDs), or adjustable speed drives (ASDs).

3A226 High-power direct current power supplies having both of the following characteristics (see List of Items Controlled), excluding items that are subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A
List of Items Controlled

Related Controls: (1) See ECCNs 3E001 (“development” and “production”) and 3E201 (“use”) for technology for items controlled under this entry. (2) Also see ECCN 3A227. (3) Direct current power supplies “specially designed” or prepared for use in separating uranium isotopes are subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

Related Definitions: N/A

Items:

a. Capable of continuously producing, over a time period of 8 hours, 100 V or greater with current output of 500 A or greater; and

b. Current or voltage stability better than 0.1% over a time period of 8 hours.

3A228 Switching devices, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A
under this entry. (2) Also see ECCN 3A991.k.

Related Definitions: N/A

Items:

a. Cold-cathode tubes, whether gas filled or not, operating similarly to a spark gap, having all of the following characteristics:

a.1. Containing three or more electrodes;

a.2. Anode peak voltage rating of 2.5 kV or more;

a.3. Anode peak current rating of 100 A or more; and

a.4. Anode delay time of 10 μs or less.

Technical Note: 3A228.a includes gas krytron tubes and vacuum sprytron tubes.

b. Triggered spark-gaps having both of the following characteristics:

b.1. An anode delay time of 15μs or less; and

b.2. Rated for a peak current of 500 A or more.

c. Modules or assemblies with a fast switching function having all of the following characteristics:

c.1. Anode peak voltage rating greater than 2 kV;

c.2. Anode peak current rating of 500 A or more; and

c.3. Turn-on time of 1μs or less.

3A229 Firing sets and equivalent high-current pulse generators for detonators controlled by 3A232 (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT, Foreign policy

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
<tr>
<td>Russian industry sector sanctions apply to entire entry</td>
<td>See § 746.5 for specific license requirements and license review policy.</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: (1) See ECCNs 3E001 and 1E001 (“development” and “production”) and 3E201 and 1E201 (“use”) for technology for items controlled under this entry. (2) See 1A007.a for explosive detonator firing sets designed to drive explosive detonators controlled by 1A007.b. (3) High explosives and related equipment for military use are “subject to the ITAR” (see 22 CFR parts 120 through 130).

Related Definitions: N/A

ECCN Controls: (1) Optically driven firing sets include both those employing laser initiation and laser charging. (2) Explosively driven firing sets include both explosive ferroelectric and explosive ferromagnetic firing set types. (3) 3A229.b includes xenon flash-lamp drivers.

Items:

a. Detonator firing sets (initiation systems, firesets), including electronically-charged, explosively-driven and optically-driven firing sets designed to drive multiple controlled detonators controlled by 3A232;
b. Modular electrical pulse generators (pulsers) having all of the following characteristics:

b.1. Designed for portable, mobile, or ruggedized use;

b.2. Capable of delivering their energy in less than 15 µs into loads of less than 40 Ω (ohms);

b.3. Having an output greater than 100 A;

b.4. No dimension greater than 30 cm;

b.5. Weight less than 30 kg; and

b.6. Specified for use over an extended temperature range 223 K (−50 °C) to 373 K (100 °C) or specified as suitable for aerospace applications.

c. Micro-firing units having all of the following characteristics:

c.1. No dimension greater than 35 mm;

c.2. Voltage rating of equal to or greater than 1 kV; and

c.3. Capacitance of equal to or greater than 100 nF.

3A230 High-speed pulse generators, and pulse heads therefor, having both of the following characteristics (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: (1) See ECCNs 3E001 (“development” and “production”) and 3E201 (“use”) for technology for items controlled under this entry. (2) See ECCNs 3A002.d.1, 3A992.a and 3A999.d.

Related Definitions: 1. In 3A230.b, the term “pulse transition time” is defined as the time interval between 10% and 90% voltage amplitude. 2. Pulse heads are impulse forming networks designed to accept a voltage step function and shape it into a variety of pulse forms that can include rectangular, triangular, step, impulse, exponential, or monocycle types. Pulse heads can be an integral part of the pulse generator, they can be a plug-in module to the device or they can be an externally connected device.

Items:

a. Output voltage greater than 6 V into a resistive load of less than 55 ohms; and

b. “Pulse transition time” less than 500 ps.

3A231 Neutron generator systems, including tubes, having both of the characteristics described in this ECCN (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT , Foreign policy

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NP applies to entire entry | NP Column 1
---|---
AT applies to entire entry | AT Column 1

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: See ECCNs 3E001 ("development" and "production") and 3E201 ("use") for technology for items controlled under this entry.

Related Definitions: N/A

Items:

a. Designed for operation without an external vacuum system; and

b. Utilizing electrostatic acceleration to induce:

b.1. A tritium-deuterium nuclear reaction; or

b.2. A deuterium-deuterium nuclear reaction and capable of an output of 3×10^9 neutrons/s or greater.

3A232 Detonators and multipoint initiation systems, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT, Foreign policy

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

3A233 Mass spectrometers, capable of measuring ions of 230 atomic mass units or greater and having a resolution of better than 2 parts in 230, and ion sources therefor, excluding items that are subject to the export
licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: (1) See ECCNs 3E001 ("development” and “production”) and 3E201 ("use") for technology for items controlled under this entry. (2) Mass spectrometers “specially designed” or prepared for analyzing on-line samples of UF₆ gas streams are subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

Related Definitions: N/A

Items:

a. Inductively coupled plasma mass spectrometers (ICP/MS);
b. Glow discharge mass spectrometers (GDMS);
c. Thermal ionization mass spectrometers (TIMS);
d. Electron bombardment mass spectrometers having both of the following features:
 d.1. A molecular beam inlet system that injects a collimated beam of analyte molecules into a region of the ion source where the molecules are ionized by an electron beam; and
 d.2. One or more cold traps that can be cooled to a temperature of 193 K (-80 °C) or less in order to trap analyte molecules that are not ionized by the electron beam;
e. Mass spectrometers equipped with a microfluorination ion source designed for actinides or actinide fluorides.

Technical Notes:

1. ECCN 3A233.d controls mass spectrometers that are typically used for isotopic analysis of UF₆ gas samples.

2. Electron bombardment mass spectrometers in ECCN 3A233.d are also known as electron impact mass spectrometers or electron ionization mass spectrometers.

3. In ECCN 3A233.d.2, a “cold trap” is a device that traps gas molecules by condensing or freezing them on cold surfaces. For the purposes of this ECCN, a closed-loop gaseous helium cryogenic vacuum pump is not a cold trap.

3A234 Striplines to provide low inductance path to detonators with the following characteristics (see List of Items Controlled).

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A
List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

a. Voltage rating greater than 2 kV; and
b. Inductance of less than 20 nH.

3A611 Military electronics, as follows (see List of Items Controlled).

Reason for Control: NS, RS, AT, UN

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (see Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry except 3A611.y</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>RS applies to entire entry except 3A611.y</td>
<td>RS Column 1</td>
</tr>
<tr>
<td>RS applies to 3A611.y</td>
<td>China, Russia, or Venezuela (see § 742.6(a)(7))</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
<tr>
<td>UN applies to entire entry except 3A611.y</td>
<td>See § 746.1(b) for UN controls</td>
</tr>
</tbody>
</table>

List Based License Exceptions (see Part 740 for a description of all license exceptions)

LVS: $1500 for 3A611.a, .d through .h and .x; N/A for ECCN 3A611.c.
GBS: N/A

Special Conditions for STA

STA: Paragraph (c)(2) of License Exception STA (§ 740.20(c)(2) of the EAR) may not be used for any item in 3A611.

List of Items Controlled

Related Controls: (1) Electronic items that are enumerated in USML Category XI or other USML categories, and technical data (including software) directly related thereto, are subject to the ITAR. (2) Application specific integrated circuits (ASICs) and programmable logic devices (PLD) that are programmed for defense articles that are subject to the ITAR are controlled in USML Category XI(c)(1). (3) See ECCN 3A001.a.7 for controls on unprogrammed programmable logic devices (PLD). (4) Printed circuit boards and populated circuit cards with a layout that is “specially designed” for defense articles are controlled in USML Category XI(c)(2). (5) Multichip modules for which the pattern or layout is “specially designed” for defense articles are controlled in USML Category XI(c)(3). (6) Electronic items “specially designed” for military application that are not controlled in any USML category but are within the scope of another “600 series” ECCN or a 9x515 ECCN are controlled by that “600 series” ECCN or 9x515 ECCN. For example, electronic components not enumerated on the USML or a “600 series” other than 3A611 that are “specially designed” for a military aircraft controlled by USML Category VIII or ECCN 9A610 are controlled by the catch-all control in ECCN 9A610.x. Electronic components not enumerated on the USML or another “600 series” entry that are “specially designed” for a military vehicle controlled by USML Category VII or ECCN 0A606 are controlled by ECCN 0A606.x. Electronic components not enumerated on the USML that are “specially designed” for a missile controlled by USML Category IV are controlled by ECCN 9A604.(7) Certain radiation-hardened microelectronic circuits are controlled by ECCN 9A515.d or 9A515.e, when “specially designed” for defense articles, “600 series” items, or items controlled by 9A515.

Related Definitions: N/A
Items:

a. Electronic “equipment,” “end items,” and “systems” “specially designed” for a military application that are not enumerated or otherwise described in either a USML category or another
“600 series” ECCN.

Note to 3A611.a: ECCN 3A611.a includes any radar, telecommunications, acoustic or computer equipment, end items, or systems “specially designed” for military application that are not enumerated or otherwise described in any USML category or controlled by another “600 series” ECCN.

b. [Reserved]

c. [Reserved]

d. [Reserved]

e. High frequency (HF) surface wave radar that maintains the positional state of maritime surface or low altitude airborne objects of interest in a received radar signal through time.

Note to 3A611.e: ECCN 3A611.e does not apply to systems, equipment, and assemblies “specially designed” for marine traffic control.

f. Application specific integrated circuits (ASICs) and programmable logic devices (PLD) that are not controlled by paragraph .y of this entry and that are programmed for “600 series” items.

Note to paragraph .f: In this paragraph, the term ‘application specific integrated circuit’ means an integrated circuit developed and produced for a specific application or function regardless of number of customers for which the integrated circuit is developed or produced.

g. Printed circuit boards and populated circuit card assemblies that are not controlled by paragraph .y of this entry and for which the layout is “specially designed” for “600 series” items.

h. Multichip modules that are not controlled by paragraph .y of this entry and for which the pattern or layout is “specially designed” for “600 series” items.

i. through w. [Reserved]

x. “Parts,” “components,” “accessories,” and “attachments” that are “specially designed” for a commodity controlled by this entry or for an article controlled by USML Category XI, and not enumerated or described in any USML category or in any paragraph other than the .x paragraph of another 600 series ECCN or in paragraph .y of this entry.

Note 1 to ECCN 3A611.x: ECCN 3A611.x includes “parts,” “components,” “accessories,” and “attachments” “specially designed” for a radar, telecommunications, acoustic system or equipment or computer “specially designed” for military application that are neither controlled in any USML category nor controlled in any paragraph other than the .x paragraph of another “600 series” ECCN.

Note 2 to ECCN 3A611.x: ECCN 3A611.x controls “parts” and “components” “specially designed” for underwater sensors or projectors controlled by USML Category XI(c)(12) containing single-crystal lead magnesium niobate lead titanate (PMN-PT) based piezoelectrics.

Note 3 to ECCN 3A611.x: “Parts,” “components,” “accessories,” and “attachments” subject to the EAR and within the scope of any 600 series .x entry that are of a type that are or would potentially be for use in or with multiple platforms (e.g., military electronics, military vehicles, and military aircraft) may be classified under 3A611.x.

y. Specific “parts,” “components,” “accessories,” and “attachments” “specially designed” for a commodity subject to control in a “600 series” ECCN or a defense article and not elsewhere specified in any paragraph other than the .y paragraph of a “600 series” ECCN or the USML as follows, and “parts,” “components,” “accessories,” and “attachments” “specially designed” therefor:

y.1. Electrical connectors;
y.2. Electric fans;
y.3. Heat sinks;
y.4. Joy sticks;
y.5. Mica paper capacitors;
y.6. Microphones;
y.7. Potentiometers;
y.8. Rheostats;
y.9. Electric connector backshells;
y.10. Solenoids;
y.11. Speakers;
y.12. Trackballs;
y.13. Electric transformers;
y.14. Application specific integrated circuits (ASICs) and programmable logic devices (PLD) that are programmed for commodities controlled in the .y paragraph of any “600 series” ECCN;
y.15. Printed circuit boards and populated circuit card assemblies for which the layout is “specially designed” for an item controlled by the .y paragraph of any “600 series” ECCN;
y.16. Multichip modules for which the pattern or layout is “specially designed” for an item in the .y paragraph of a “600 series” ECCN;
y.17. Circuit breakers;
y.18. Ground fault circuit interrupters;
y.19. Electrical contacts;
y.20. Electrical guide pins;
y.21. Filtered and unfiltered mechanical switches;
y.22. Thumbwheels;
y.23. Fixed resistors;
y.24. Electrical jumpers;
y.25. Grounding straps;
y.26. Indicator dials;
y.27. Contactors;
y.28. Touchpads;
y.29. Mechanical caps;
y.30. Mechanical plugs;
y.31. Finger barriers;
y.32. Flip-guards;
y.33. Identification plates and nameplates;
y.34. Knobs;
y.35. Hydraulic, pneumatic, fuel and lubrication gauges.

Note to ECCN 3A611: When applying the “specially designed” definition to determine whether a printed circuit board, populated circuit card assembly or multichip module is controlled by paragraph .g, .h, .y.15 or .y.16 of this entry, the layout of the board or assembly and the pattern and layout of the module are the only characteristics that need be evaluated under the “specially designed” definition.

3A980 Voice print identification and analysis equipment and “specially designed” “components” therefor, n.e.s.

License Requirements
Reason for Control: CC

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart See Supp. No. 1 to part 738</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC applies to entire entry</td>
<td>CC Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items: N/A

The list of items controlled is contained in the ECCN heading.

3A981 Polygraphs (except biomedical recorders designed for use in medical facilities for monitoring biological and neurophysical responses); fingerprint analyzers, cameras and equipment, n.e.s.; automated fingerprint and identification retrieval systems, n.e.s.; psychological stress analysis equipment; electronic monitoring restraint devices; and “specially designed” “components” and “accessories” therefor, n.e.s.

License Requirements

Reason for Control: AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart See Supp. No. 1 to part 738</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A

3A991 Electronic devices, and “components” not controlled by 3A001.
List of Items Controlled

Related Controls: N/A
Related Definitions: N/A

Items:

a. “Microprocessor microcircuits”, “microcomputer microcircuits”, and microcontroller microcircuits having any of the following:

a.1. A performance speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more;

a.2. A clock frequency rate exceeding 25 MHz;

or

a.3. More than one data or instruction bus or serial communication port that provides a direct external interconnection between parallel “microprocessor microcircuits” with a transfer rate of 2.5 Mbyte/s.

b. Storage integrated circuits, as follows:

b.1. Electrical erasable programmable read-only memories (EEPROMs) with a storage capacity;

b.1.a. Exceeding 16 Mbits per package for flash memory types; or

b.1.b. Exceeding either of the following limits for all other EEPROM types:

b.1.b.1. Exceeding 1 Mbit per package; or

b.1.b.2. Exceeding 256 kbit per package and a maximum access time of less than 80 ns;

b.2. Static random access memories (SRAMs) with a storage capacity:

b.2.a. Exceeding 1 Mbit per package; or

b.2.b. Exceeding 256 kbit per package and a maximum access time of less than 25 ns;

c. Analog-to-digital converters having any of the following:

 c.1. A resolution of 8 bit or more, but less than 12 bit, with an output rate greater than 200 million words per second;

 c.2. A resolution of 12 bit with an output rate greater than 105 million words per second;

 c.3. A resolution of more than 12 bit but equal to or less than 14 bit with an output rate greater than 10 million words per second; or

 c.4. A resolution of more than 14 bit with an output rate greater than 2.5 million words per second.

d. Field programmable logic devices having a maximum number of single-ended digital input/outputs between 200 and 700;

e. Fast Fourier Transform (FFT) processors having a rated execution time for a 1,024 point complex FFT of less than 1 ms.

f. Custom integrated circuits for which either the function is unknown, or the control status of the equipment in which the integrated circuits will be used is unknown to the manufacturer, having any of the following:

f.1. More than 144 terminals; or

f.2. A typical “basic propagation delay time” of less than 0.4 ns.

g. Traveling-wave ‘vacuum electronic devices,’ pulsed or continuous wave, as follows:

 g.1. Coupled cavity devices, or derivatives thereof;

 g.2. Helix devices based on helix, folded waveguide, or serpentine waveguide circuits, or
derivatives thereof, with any of the following:

 g.2.a. An “instantaneous bandwidth” of half an octave or more; and

 g.2.b. The product of the rated average output power (expressed in kW) and the maximum operating frequency (expressed in GHz) of more than 0.2;

 g.2.c. An “instantaneous bandwidth” of less than half an octave; and

 g.2.d. The product of the rated average output power (expressed in kW) and the maximum operating frequency (expressed in GHz) of more than 0.4;

h. Flexible waveguides designed for use at frequencies exceeding 40 GHz;

i. Surface acoustic wave and surface skimming (shallow bulk) acoustic wave devices (i.e., “signal processing” devices employing elastic waves in materials), having either of the following:

 i.1. A carrier frequency exceeding 1 GHz; or

 i.2. A carrier frequency of 1 GHz or less; and

 i.2.a. A frequency side-lobe rejection exceeding 55 Db;

 i.2.b. A product of the maximum delay time and bandwidth (time in microseconds and bandwidth in MHz) of more than 100; or

 i.2.c. A dispersive delay of more than 10 microseconds.

j. Cells as follows:

 j.1. Primary cells having an energy density of 550 Wh/kg or less at 293 K (20ºC);

 j.2. Secondary cells having an energy density of 350 Wh/kg or less at 293 K (20ºC).

Note: 3A991.j does not control batteries, including single cell batteries.

Technical Notes:

1. For the purpose of 3A991.j energy density (Wh/kg) is calculated from the nominal voltage multiplied by the nominal capacity in ampere-hours divided by the mass in kilograms. If the nominal capacity is not stated, energy density is calculated from the nominal voltage squared then multiplied by the discharge duration in hours divided by the discharge load in Ohms and the mass in kilograms.

2. For the purpose of 3A991.j, a ‘cell’ is defined as an electrochemical device, which has positive and negative electrodes, and electrolyte, and is a source of electrical energy. It is the basic building block of a battery.

3. For the purpose of 3A991.j.1, a ‘primary cell’ is a ‘cell’ that is not designed to be charged by any other source.

4. For the purpose of 3A991.j.2, a ‘secondary cell’ is a ‘cell’ that is designed to be charged by an external electrical source.

k. “Superconductive” electromagnets or solenoids “specially designed” to be fully charged or discharged in less than one minute, having all of the following:

Note: 3A991.k does not control “superconductive” electromagnets or solenoids designed for Magnetic Resonance Imaging (MRI) medical equipment.

 k.1. Maximum energy delivered during the discharge divided by the duration of the discharge of more than 500 kJ per minute;

 k.2. Inner diameter of the current carrying windings of more than 250 mm; and

 k.3. Rated for a magnetic induction of more
than 8T or “overall current density” in the winding of more than 300 A/mm².

1. Circuits or systems for electromagnetic energy storage, containing “components” manufactured from “superconductive” materials “specially designed” for operation at temperatures below the “critical temperature” of at least one of their “superconductive” constituents, having all of the following:

 1.1. Resonant operating frequencies exceeding 1 MHz;

 1.2. A stored energy density of 1 MJ/M² or more; and

 1.3. A discharge time of less than 1 ms;

m. Hydrogen/hydrogen-isotope thyratrons of ceramic-metal construction and rate for a peak current of 500 A or more;

n. Digital integrated circuits based on any compound semiconductor having an equivalent gate count of more than 300 (2 input gates).

o. Solar cells, cell-interconnect-coverglass (CIC) assemblies, solar panels, and solar arrays, which are “space qualified” and not controlled by 3A001.e.4.

3A992 General purpose electronic equipment not controlled by 3A002.

License Requirements

Reason for Control: AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart See Supp. No. 1 to part 738</th>
<th>AT Column 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>AT applies to entire entry</td>
<td></td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

a. Electronic test equipment, n.e.s.
b. Digital instrumentation magnetic tape data recorders having any of the following characteristics;

 b.1. A maximum digital interface transfer rate exceeding 60 Mbit/s and employing helical scan techniques;

 b.2. A maximum digital interface transfer rate exceeding 120 Mbit/s and employing fixed head techniques; or

 b.3. “Space qualified”;

c. Equipment, with a maximum digital interface transfer rate exceeding 60 Mbit/s, designed to convert digital video magnetic tape recorders for use as digital instrumentation data recorders;

d. Non-modular analog oscilloscopes having a bandwidth of 1 GHz or greater;

e. Modular analog oscilloscope systems having either of the following characteristics:

 e.1. A mainframe with a bandwidth of 1 GHz or greater; or

 e.2. Plug-in modules with an individual bandwidth of 4 GHz or greater;

f. Analog sampling oscilloscopes for the analysis of recurring phenomena with an effective bandwidth greater than 4 GHz;

g. Digital oscilloscopes and transient recorders,
using analog-to-digital conversion techniques, capable of storing transients by sequentially sampling single-shot inputs at successive intervals of less than 1 ns (greater than 1 gigasample per second), digitizing to 8 bits or greater resolution and storing 256 or more samples.

Note: This ECCN controls the following “specially designed” “parts” and “components” for analog oscilloscopes:
1. Plug-in units;
2. External amplifiers;
3. Pre-amplifiers;
4. Sampling devices;
5. Cathode ray tubes.

3A999 Specific processing equipment, n.e.s., as follows (see List of Items Controlled).

License Requirements

<table>
<thead>
<tr>
<th>Reason for Control</th>
<th>AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control(s)</td>
<td>AT applies to entire entry</td>
</tr>
<tr>
<td>Country Chart See Supp. No. 1 to part 738</td>
<td>A license is required for items controlled by this entry to North Korea for anti-terrorism reasons. The Commerce Country Chart is not designed to determine AT licensing requirements for this entry. See §742.19 of the EAR for additional information.</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A
GBS: N/A

List of Items Controlled

Related Controls: (1) See also, 3A225 (for frequency changes capable of operating in the frequency range of 600 Hz and above), and

3A233. (2) Certain auxiliary systems, equipment, “parts” and “components” for isotope separation plants, made of or protected by UF₆ resistant materials are subject to the export licensing authority of the Nuclear Regulatory Commission (see 10 CFR part 110).

Related Definitions: N/A

Items:

a. Frequency changers capable of operating in the frequency range from 300 up to 600 Hz, n.e.s;

b. Mass spectrometers n.e.s;

c. All flash x-ray machines, and “parts” or “components” of pulsed power systems designed thereof, including Marx generators, high power pulse shaping networks, high voltage capacitors, and triggers;

d. Pulse amplifiers, n.e.s.;

e. Electronic equipment for time delay generation or time interval measurement, as follows:

 e.1. Digital time delay generators with a resolution of 50 nanoseconds or less over time intervals of 1 microsecond or greater; or

 e.2. Multi-channel (three or more) or modular time interval meter and chronometry equipment with resolution of 50 nanoseconds or less over time intervals of 1 microsecond or greater;

f. Chromatography and spectrometry analytical instruments.

B. TEST, INSPECTION AND “PRODUCTION EQUIPMENT”

3B001 Equipment for the manufacturing of semiconductor devices or materials, as follows (see List of Items Controlled) and “specially designed” “components” and “accessories” therefor.

License Requirements
Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart See Supp. No. 1 to part 738</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: $500

GBS: Yes, except a.3 (molecular beam epitaxial growth equipment using gas sources), .e (automatic loading multi-chamber central wafer handling systems only if connected to equipment controlled by 3B001. a.3, or .f), and .f (lithography equipment).

List of Items Controlled

Related Controls: See also 3B991

Related Definitions: N/A

Items:

a. Equipment designed for epitaxial growth as follows:

a.1. Equipment designed or modified to produce a layer of any material other than silicon with a thickness uniform to less than ± 2.5% across a distance of 75 mm or more;

Note: 3B001.a.1 includes atomic layer epitaxy (ALE) equipment.

a.2. Metal Organic Chemical Vapor Deposition (MOCVD) reactors designed for compound semiconductor epitaxial growth of material having two or more of the following elements: aluminum, gallium, indium, arsenic, phosphorus, antimony, or nitrogen;

a.3. Molecular beam epitaxial growth equipment using gas or solid sources;

b. Equipment designed for ion implantation and having any of the following:

b.1. [Reserved];

b.2. Being designed and optimized to operate at a beam energy of 20 keV or more and a beam current of 10 mA or more for hydrogen, deuterium, or helium implant;

b.3. Direct write capability;

b.4. A beam energy of 65 keV or more and a beam current of 45 mA or more for high energy oxygen implant into a heated semiconductor material “substrate”; or

b.5. Being designed and optimized to operate at beam energy of 20keV or more and a beam current of 10mA or more for silicon implant into a semiconductor material “substrate” heated to 600 °C or greater;

c. [Reserved]

d. [Reserved]

e. Automatic loading multi-chamber central wafer handling systems having all of the following:

e.1. Interfaces for wafer input and output, to which more than two functionally different ‘semiconductor process tools’ controlled by 3B001.a.1, 3B001.a.2, 3B001.a.3 or 3B001.b are designed to be connected; and

e.2. Designed to form an integrated system in a vacuum environment for ‘sequential multiple wafer processing’;

Note: 3B001.e does not control automatic robotic wafer handling systems “specially designed” for parallel wafer processing.
Technical Notes:

1. **For the purpose of 3B001.e, ‘semiconductor process tools’ refers to modular tools that provide physical processes for semiconductor production that are functionally different, such as deposition, implant or thermal processing.**

2. **For the purpose of 3B001.e, ‘sequential multiple wafer processing’ means the capability to process each wafer in different ‘semiconductor process tools’, such as by transferring each wafer from one tool to a second tool and on to a third tool with the automatic loading multi-chamber central wafer handling systems.**

f. **Lithography equipment as follows:**

f.1. **Align and expose step and repeat (direct step on wafer) or step and scan (scanner) equipment for wafer processing using photo-optical or X-ray methods and having any of the following:**

 f.1.a. A light source wavelength shorter than 193 nm; or

 f.1.b. Capable of producing a pattern with a “Minimum Resolvable Feature size” (MRF) of 45 nm or less;

 Technical Note: The ‘Minimum Resolvable Feature size’ (MRF) is calculated by the following formula:

 \[
 MRF = \frac{(an\ exposure\ light\ source\ wavelength\ in\ nm) \times (K\ factor)}{numerical\ aperture}
 \]

 where the K factor = 0.35

f.2 **Imprint lithography equipment capable of production features of 45 nm or less;**

 Note: 3B001.f.2 includes:

 - Micro contact printing tools
 - Hot embossing tools
 - Nano-imprint lithography tools
 - Step and flash imprint lithography (S-FIL) tools

f.3. **Equipment “specially designed” for mask making having all of the following:**

 f.3.a. A deflected focused electron beam, ion beam or “laser” beam; and

 f.3.b. Having any of the following:

 f.3.b.1. A Full-Width Half-Maximum (FWHM) spot size smaller than 65 nm and an image placement less than 17 nm (mean + 3 sigma); or

 f.3.b.2. [Reserved]

 f.3.b.3. A second-layer overlay error of less than 23 nm (mean + 3 sigma) on the mask;

f.4. **Equipment designed for device processing using direct writing methods, having all of the following:**

 f.4.a. A deflected focused electron beam; and

 f.4.b. Having any of the following:

 f.4.b.1. A minimum beam size equal to or smaller than 15 nm; or

 f.4.b.2. An overlay error less than 27 nm (mean + 3 sigma);

 g. Masks and reticles, designed for integrated circuits controlled by 3A001:

 h. **Multi-layer masks with a phase shift layer not specified by 3B001.g and having any of the following:**
h.1. Made on a mask “substrate blank” from glass specified as having less than 7 nm/cm birefringence; or

h.2. Designed to be used by lithography equipment having a light source wavelength less than 245 nm;

Note: 3B001.h. does not control multi-layer masks with a phase shift layer designed for the fabrication of memory devices not controlled by 3A001.

i. Imprint lithography templates designed for integrated circuits by 3A001;

j. Mask “substrate blanks” with multilayer reflector structure consisting of molybdenum and silicon, and having all of the following:

j.1. “Specially designed” for ‘Extreme Ultraviolet (EUV)’ lithography; and

j.2. Compliant with SEMI Standard P37.

Technical Note: ‘Extreme Ultraviolet (EUV)’ refers to electromagnetic spectrum wavelengths greater than 5 nm and less than 124 nm.

3B002 Test equipment “specially designed” for testing finished or unfinished semiconductor devices as follows (see List of Items Controlled) and “specially designed” “components” and “accessories” therefor.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: $500
GBS: Yes

List of Items Controlled

Related Controls: See also 3A999.a and 3B992
Related Definitions: N/A

Items:

a. For testing S-parameters of items specified by 3A001.b.3;

b. [Reserved]

c. For testing microwave integrated circuits controlled by 3A001.b.2.

3B611 Test, inspection, and production commodities for military electronics, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NS, AT, UN

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (see Part 740 for a description of all license exceptions)

LVS: $1500
GBS: N/A

Special Conditions for STA
List of Items Controlled

Related Controls: N/A
Related Definitions: ‘Sputtering’ is an overlay coating process wherein positively charged ions are accelerated by an electric field towards the surface of a target (coating material). The kinetic energy of the impacting ions is sufficient to cause target surface atoms to be released and deposited on the substrate. (Note: Triode, magnetron or radio frequency sputtering to increase adhesion of coating and rate of deposition are ordinary modifications of the process.)

Items:

a. Equipment “specially designed” for the manufacture of semiconductor devices, integrated circuits and “electronic assemblies”, as follows, and systems incorporating or having the characteristics of such equipment:

Note: 3B991.b also controls equipment used or modified for use in the manufacture of other devices, such as imaging devices, electro-optical devices, acoustic-wave devices.

b.1. Equipment for the processing of materials for the manufacture of devices, “parts” and “components” as specified in the heading of 3B991.b, as follows:

Note: 3B991 does not control quartz furnace tubes, furnace liners, paddles, boats (except “specially designed” caged boats), bubblers, cassettes or crucibles “specially designed” for the processing equipment controlled by 3B991.b.1.

b.1.a. Equipment for producing polycrystalline silicon and materials controlled
by 3C001;

b.1.b. Equipment “specially designed” for purifying or processing III/V and II/VI semiconductor materials controlled by 3C001, 3C002, 3C003, 3C004, or 3C005 except crystal pullers, for which see 3B991.b.1.c below;

b.1.c. Crystal pullers and furnaces, as follows:

Note: 3B991.b.1.c does not control diffusion and oxidation furnaces.

b.1.c.1. Annealing or recrystallizing equipment other than constant temperature furnaces employing high rates of energy transfer capable of processing wafers at a rate exceeding 0.005 m² per minute;

b.1.c.2. “Stored program controlled” crystal pullers having any of the following characteristics:

b.1.c.2.a. Rechargeable without replacing the crucible container;

b.1.c.2.b. Capable of operation at pressures above 2.5 x 10⁵ Pa; or

b.1.c.2.c. Capable of pulling crystals of a diameter exceeding 100 mm;

b.1.d. “Stored program controlled” equipment for epitaxial growth having any of the following characteristics:

b.1.d.1. Capable of producing silicon layer with a thickness uniform to less than ± 2.5% across a distance of 200 mm or more;

b.1.d.2. Capable of producing a layer of any material other than silicon with a thickness uniformity across the wafer of equal to or better than ± 3.5%; or

b.1.d.3. Rotation of individual wafers during processing;

b.1.e. Molecular beam epitaxial growth equipment;

b.1.f. Magnetically enhanced ‘sputtering’ equipment with “specially designed” integral load locks capable of transferring wafers in an isolated vacuum environment;

b.1.g. Equipment “specially designed” for ion implantation, ion-enhanced or photo-enhanced diffusion, having any of the following characteristics:

b.1.g.1. Patterning capability;

b.1.g.2. Beam energy (accelerating voltage) exceeding 200 keV;

b.1.g.3 Optimized to operate at a beam energy (accelerating voltage) of less than 10 keV; or

b.1.g.4. Capable of high energy oxygen implant into a heated “substrate”;

b.1.h. “Stored program controlled” equipment for the selective removal (etching) by means of anisotropic dry methods (e.g., plasma), as follows:

b.1.h.1. Batch types having either of the following:

b.1.h.1.a. End-point detection, other than optical emission spectroscopy types; or

b.1.h.1.b. Reactor operational (etching) pressure of 26.66 Pa or less;

b.1.h.2. Single wafer types having any of the following:

b.1.h.2.a. End-point detection, other than optical emission spectroscopy types;

b.1.h.2.b. Reactor operational (etching) pressure of 26.66 Pa or less; or
b.1.h.2.c. Cassette-to-cassette and load locks wafer handling;

Notes: 1. “Batch types” refers to machines not “specially designed” for production processing of single wafers. Such machines can process two or more wafers simultaneously with common process parameters, e.g., RF power, temperature, etch gas species, flow rates.

2. “Single wafer types” refers to machines “specially designed” for production processing of single wafers. These machines may use automatic wafer handling techniques to load a single wafer into the equipment for processing. The definition includes equipment that can load and process several wafers but where the etching parameters, e.g., RF power or end point, can be independently determined for each individual wafer.

b.1.i. “Chemical vapor deposition” (CVD) equipment, e.g., plasma-enhanced CVD (PECVD) or photo-enhanced CVD, for semiconductor device manufacturing, having either of the following capabilities, for deposition of oxides, nitrides, metals or polysilicon:

b.1.i.1. “Chemical vapor deposition” equipment operating below 10^{-5} Pa; or

b.1.i.2. PECVD equipment operating either below 60 Pa (450 millitorr) or having automatic cassette-to-cassette and load lock wafer handling;

Note: 3B991.b.1.i does not control low pressure “chemical vapor deposition” (LPCVD) systems or reactive “sputtering” equipment.

b.1.j. Electron beam systems “specially designed” or modified for mask making or semiconductor device processing having any of the following characteristics:

b.1.j.1. Electrostatic beam deflection;

b.1.j.2. Shaped, non-Gaussian beam profile;

b.1.j.3. Digital-to-analog conversion rate exceeding 3 MHz;

b.1.j.4. Digital-to-analog conversion accuracy exceeding 12 bit; or

b.1.j.5. Target-to-beam position feedback control precision of 1 micrometer or finer;

Note: 3B991.b.1.j does not control electron beam deposition systems or general purpose scanning electron microscopes.

b.1.k. Surface finishing equipment for the processing of semiconductor wafers as follows:

b.1.k.1. “Specially designed” equipment for backside processing of wafers thinner than 100 micrometer and the subsequent separation thereof; or

b.1.k.2. “Specially designed” equipment for achieving a surface roughness of the active surface of a processed wafer with a two-sigma value of 2 micrometer or less, total indicator reading (TIR);

Note: 3B991.b.1.k does not control single-side lapping and polishing equipment for wafer surface finishing.

b.1.l. Interconnection equipment which includes common single or multiple vacuum chambers “specially designed” to permit the integration of any equipment controlled by 3B991 into a complete system;

b.1.m. “Stored program controlled” equipment using “lasers” for the repair or trimming of “monolithic integrated circuits” with either of the following characteristics:

b.1.m.1. Positioning accuracy less than ± 1 micrometer; or

b.1.m.2. Spot size (kerf width) less than 3 micrometer.
b.2. Masks, mask “substrates,” mask-making equipment and image transfer equipment for the manufacture of devices, “parts” and “components” as specified in the heading of 3B991, as follows:

Note: The term “masks” refers to those used in electron beam lithography, X-ray lithography, and ultraviolet lithography, as well as the usual ultraviolet and visible photo-lithography.

b.2.a. Finished masks, reticles and designs therefor, except:

b.2.a.1. Finished masks or reticles for the production of unembargoed integrated circuits; or

b.2.a.2. Masks or reticles, having both of the following characteristics:

b.2.a.2.a. Their design is based on geometries of 2.5 micrometer or more; and

b.2.a.2.b. The design does not include special features to alter the intended use by means of production equipment or “software”;

b.2.b. Mask “substrates” as follows:

b.2.b.1. Hard surface (e.g., chromium, silicon, molybdenum) coated “substrates” (e.g., glass, quartz, sapphire) for the preparation of masks having dimensions exceeding 125 mm x 125 mm; or

b.2.b.2. “Substrates” “specially designed” for X-ray masks;

b.2.c. Equipment, other than general purpose computers, “specially designed” for computer aided design (CAD) of semiconductor devices or integrated circuits;

b.2.d. Equipment or machines, as follows, for mask or reticle fabrication:

b.2.d.1. Photo-optical step and repeat cameras capable of producing arrays larger than 100 mm x 100 mm, or capable of producing a single exposure larger than 6 mm x 6 mm in the image (i.e., focal) plane, or capable of producing line widths of less than 2.5 micrometer in the photoresist on the “substrate”;

b.2.d.2. Mask or reticle fabrication equipment using ion or “laser” beam lithography capable of producing line widths of less than 2.5 micrometer; or

b.2.d.3. Equipment or holders for altering masks or reticles or adding pellicles to remove defects;

Note: 3B991.b.2.d.1 and b.2.d.2 do not control mask fabrication equipment using photo-optical methods which was either commercially available before the 1st January, 1980, or has a performance no better than such equipment.

b.2.e. “Stored program controlled” equipment for the inspection of masks, reticles or pellicles with:

b.2.e.1. A resolution of 0.25 micrometer or finer; and

b.2.e.2. A precision of 0.75 micrometer or finer over a distance in one or two coordinates of 63.5 mm or more;

Note: 3B991.b.2.e does not control general purpose scanning electron microscopes except when “specially designed” and instrumented for automatic pattern inspection.

b.2.f. Align and expose equipment for wafer production using photo-optical or X-ray methods, e.g., lithography equipment, including both projection image transfer equipment and step and repeat (direct step on wafer) or step and scan (scanner) equipment, capable of performing any of the following functions:

Note: 3B991.b.2.f does not control photo-optical contact and proximity mask align and expose equipment or contact image transfer equipment.
b.2.f.1. Production of a pattern size of less than 2.5 micrometer;

b.2.f.2. Alignment with a precision finer than ± 0.25 micrometer (3 sigma);

b.2.f.3. Machine-to-machine overlay no better than ± 0.3 micrometer; or

b.2.f.4. A light source wavelength shorter than 400 nm;

b.2.g. Electron beam, ion beam or X-ray equipment for projection image transfer capable of producing patterns less than 2.5 micrometer;

Note: For focused, deflected-beam systems (direct write systems), see 3B991.b.1.j or b.10.

b.2.h. Equipment using “lasers” for direct write on wafers capable of producing patterns less than 2.5 micrometer.

b.3. Equipment for the assembly of integrated circuits, as follows:

b.3.a. “Stored program controlled” die bonders having all of the following characteristics:

b.3.a.1. “Specially designed” for “hybrid integrated circuits”;

b.3.a.2. X-Y stage positioning travel exceeding 37.5 x 37.5 mm; and

b.3.a.3. Placement accuracy in the X-Y plane of finer than ± 10 micrometer;

b.3.b. “Stored program controlled” equipment for producing multiple bonds in a single operation (e.g., beam lead bonders, chip carrier bonders, tape bonders);

b.3.c. Semi-automatic or automatic hot cap sealers, in which the cap is heated locally to a higher temperature than the body of the package, “specially designed” for ceramic microcircuit packages controlled by 3A001 and that have a throughput equal to or more than one package per minute.

Note: 3B991.b.3 does not control general purpose resistance type spot welders.

b.4. Filters for clean rooms capable of providing an air environment of 10 or less particles of 0.3 micrometer or smaller per 0.02832 m³ and filter materials therefor.

3B992 Equipment not controlled by 3B002 for the inspection or testing of electronic “components” and materials, and “specially designed” “parts,” “components” and “accessories” therefor.

License Requirements

Reason for Control: AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: N/A

GBS: N/A

List of Items Controlled

Related Controls: See also 3A992.a.
Related Definitions: N/A

Items:

a. Equipment “specially designed” for the inspection or testing of electron tubes, optical elements and “specially designed” “parts” and “components” therefor controlled by 3A001 or 3A991;
b. Equipment “specially designed” for the inspection or testing of semiconductor devices, integrated circuits and “electronic assemblies”, as follows, and systems incorporating or having the characteristics of such equipment:

Note: 3B992.b also controls equipment used or modified for use in the inspection or testing of other devices, such as imaging devices, electro-optical devices, acoustic-wave devices.

b.1. “Stored program controlled” inspection equipment for the automatic detection of defects, errors or contaminants of 0.6 micrometer or less in or on processed wafers, “substrates”, other than printed circuit boards or chips, using optical image acquisition techniques for pattern comparison;

Note: 3B992.b.1 does not control general purpose scanning electron microscopes, except when “specially designed” and instrumented for automatic pattern inspection.

b.2. “Specially designed” “stored program controlled” measuring and analysis equipment, as follows:

b.2.a. “Specially designed” for the measurement of oxygen or carbon content in semiconductor materials;

b.2.b. Equipment for line width measurement with a resolution of 1 micrometer or finer;

b.2.c. “Specially designed” flatness measurement instruments capable of measuring deviations from flatness of 10 micrometer or less with a resolution of 1 micrometer or finer.

b.3. “Stored program controlled” wafer probing equipment having any of the following characteristics:

b.3.a. Positioning accuracy finer than 3.5 micrometer;

b.3.b. Capable of testing devices having more than 68 terminals; or

b.3.c. Capable of testing at a frequency exceeding 1 GHz;

b.4. Test equipment as follows:

b.4.a. “Stored program controlled” equipment “specially designed” for testing discrete semiconductor devices and unencapsulated dice, capable of testing at frequencies exceeding 18 GHz;

Technical Note: Discrete semiconductor devices include photocells and solar cells.

b.4.b. “Stored program controlled” equipment “specially designed” for testing integrated circuits and “electronic assemblies” thereof, capable of functional testing:

b.4.b.1. At a ‘pattern rate’ exceeding 20 MHz; or

b.4.b.2. At a ‘pattern rate’ exceeding 10 MHz but not exceeding 20 MHz and capable of testing packages of more than 68 terminals.

Notes: 3B992.b.4.b does not control test equipment “specially designed” for testing:

1. Memories;

2. “Assemblies” or a class of “electronic assemblies” for home and entertainment applications; and

3. Electronic “parts,” “components,” “assemblies” and integrated circuits not controlled by 3A001 or 3A991 provided such test equipment does not incorporate computing facilities with “user accessible programmability”.

Technical Note: For purposes of 3B992.b.4.b, ‘pattern rate’ is defined as the maximum frequency of digital operation of a tester. It is therefore equivalent to the highest data rate that
a tester can provide in non-multiplexed mode. It is also referred to as test speed, maximum digital frequency or maximum digital speed.

b.4.c. Equipment “specially designed” for determining the performance of focal-plane arrays at wavelengths of more than 1,200 nm, using “stored program controlled” measurements or computer aided evaluation and having any of the following characteristics:

b.4.c.1. Using scanning light spot diameters of less than 0.12 mm;

b.4.c.2. Designed for measuring photosensitive performance parameters and for evaluating frequency response, modulation transfer function, uniformity of responsivity or noise; or

b.4.c.3. Designed for evaluating arrays capable of creating images with more than 32 x 32 line elements;

b.5. Electron beam test systems designed for operation at 3 keV or below, or “laser” beam systems, for non-contactive probing of powered-up semiconductor devices having any of the following:

b.5.a. Stroboscopic capability with either beam blanking or detector strobing;

b.5.b. An electron spectrometer for voltage measurements with a resolution of less than 0.5 V; or

b.5.c. Electrical tests fixtures for performance analysis of integrated circuits;

Note: 3B992.b.5 does not control scanning electron microscopes, except when “specially designed” and instrumented for non-contactive probing of a powered-up semiconductor device.

b.6. “Stored program controlled” multifunctional focused ion beam systems “specially designed” for manufacturing, repairing, physical layout analysis and testing of masks or semiconductor devices and having either of the following characteristics:

b.6.a. Target-to-beam position feedback control precision of 1 micrometer or finer; or

b.6.b. Digital-to-analog conversion accuracy exceeding 12 bit;

b.7. Particle measuring systems employing “lasers” designed for measuring particle size and concentration in air having both of the following characteristics:

b.7.a. Capable of measuring particle sizes of 0.2 micrometer or less at a flow rate of 0.02832 m³ per minute or more; and

b.7.b. Capable of characterizing Class 10 clean air or better.

C. “MATERIALS”

3C001 Hetero-epitaxial materials consisting of a “substrate” having stacked epitaxially grown multiple layers of any of the following (see List of Items Controlled).

License Requirements

<table>
<thead>
<tr>
<th>Reason for Control</th>
<th>NS, AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control(s)</td>
<td>Country Chart (See Supp. No. 1 to part 738)</td>
</tr>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

AT applies to entire entry AT Column 1

List Based License Exceptions (See Part 740 for a description of all license exceptions)
List of Items Controlled

Related Controls: This entry does not control equipment or material whose functionality has been unalterably disabled and are not controlled.

Related Definitions: N/A

Items:

a. Silicon (Si);

b. Germanium (Ge);

c. Silicon Carbide (SiC); or

d. “III/V compounds” of gallium or indium.

Note: 3C001.d does not apply to a “substrate” having one or more P-type epitaxial layers of GaN, InGaN, AlGaN, InAlN, InAlGaN, GaP, GaAs, AlGaAs, InP, InGaP, AlInP or InGaAlP, independent of the sequence of the elements, except if the P-type epitaxial layer is between N-type layers.

3C002 Resist materials as follows (see List of Items Controlled) and “substrates” coated with the following resists.

License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

3C003 Organo-inorganic compounds as follows (see List of Items Controlled).

License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire</td>
<td>NS Column 2</td>
</tr>
</tbody>
</table>
List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: $3000
GBS: N/A

List of Items Controlled

Related Controls: N/A
Related Definition: N/A
Items:

The list of items controlled is contained in the ECCN heading.

Note: This entry does not control hydrides containing 20% molar or more of inert gases or hydrogen.

3C005 High resistivity materials as follows (See List of Items Controlled).

License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: $3000
GBS: Yes

List of Items Controlled

Related Controls: See ECCN 3E001 for related development and production technology, and ECCN 3B991.b.1.b for related production equipment.
Related Definition: N/A
Items:
a. Silicon carbide (SiC), gallium nitride (GaN), aluminum nitride (AlN) or aluminum gallium nitride (AlGaN) semiconductor “substrates”, or ingots, boules, or other preforms of those materials, having resistivities greater than 10,000 ohm-cm at 20°C;

b. Polycrystalline “substrates” or polycrystalline ceramic “substrates”, having resistivities greater than 10,000 ohm-cm at 20°C and having at least one non-epitaxial single-crystal layer of silicon (Si), silicon carbide (SiC), gallium nitride (GaN), aluminum nitride (AlN), or aluminum gallium nitride (AlGaN) on the surface of the “substrate”.

3C006 Materials, not specified by 3C001, consisting of a “substrate” specified by 3C005 with at least one epitaxial single-crystal layer of silicon carbide, gallium nitride, aluminum nitride or aluminum gallium nitride.

License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 2</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

LVS: $3000
GBS: Yes

List of Items Controlled

Related Controls: See ECCN 3D001 for related “development” or “production” “software”, ECCN 3E001 for related “development” and “production” “technology”, and ECCN 3B991.b.1.b for related “production” equipment.

3C992 Positive resists designed for semiconductor lithography specially adjusted (optimized) for use at wavelengths between 370 and 193 nm.

License Requirements

Reason for Control: AT

Related Definition: N/A

Items:

The list of items controlled is contained in the ECCN heading.

D. “SOFTWARE”

3D001 “Software” “specially designed” for the “development” or “production” of equipment controlled by 3A001.b to 3A002.h or 3B (except 3B991 and 3B992).

License Requirements

Reason for Control: NS, AT
3D002 “Software” “specially designed” for the “use” of equipment controlled by 3B001.a to .f, or 3B002.

License Requirements

Reason for Control: NS, AT

License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: Yes, except for “software” “specially designed” for the “development” or “production” of Traveling Wave Tube Amplifiers described in 3A001.b.8 having operating frequencies exceeding 18 GHz.

Special Conditions for STA

STA: License Exception STA may not be used to ship or transmit “software” “specially designed” for the “development” or “production” of equipment specified by 3A002.g.1 or 3B001.a.2 to any of the destinations listed in Country Group A:6 (See Supplement No.1 to part 740 of the EAR).

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A

The list of items controlled is contained in the ECCN heading.

3D003 ‘Physics-based’ simulation “software” “specially designed” for the “development” of lithographic, etching or deposition processes for translating masking patterns into specific topographical patterns in conductors, dielectrics or semiconductor materials.
License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: Yes

List of Items Controlled

Related Controls: N/A

Related Definitions: 1.) Libraries, design attributes or associated data for the design of semiconductor devices or integrated circuits are considered as “technology”. 2.) ‘Physics-based’ in 3D003 means using computations to determine a sequence of physical cause and effect events based on physical properties (e.g., temperature, pressure, diffusion constants and semiconductor materials properties).

Items:

The list of items controlled is contained in the ECCN heading.

3D004 “Software” “specially designed” for the “development” of equipment controlled by 3A003.

License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(See Supp. No. 1 to part 738)</td>
</tr>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSRS: N/A

Special Conditions for STA
STA: License Exception STA may not be used to ship or transmit “software” to any of the destinations listed in Country Group A:6 (See Supplement No.1 to part 740 of the EAR).

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:
The list of items controlled is contained in the ECCN heading.

3D101 “Software” “specially designed” or modified for the “use” of equipment controlled by 3A101.b.

License Requirements

Reason for Control: MT, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT applies to entire entry</td>
<td>MT Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:
The list of items controlled is contained in the ECCN heading.

3D201 “Software” “specially designed” for the “use” of equipment described in ECCN 3A225.

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: See ECCN 3E202 (“development,” “production,” and “use”) for “technology” for items controlled under this entry.
Related Definitions: N/A
Items:
The list of items controlled is contained in the ECCN heading.

3D202 “Software” “specially designed” to enhance or release the performance characteristics of frequency changers or generators to meet or exceed the level of the performance characteristics described in ECCN 3A225.

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>
List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: See ECCN 3E202 ("development,” “production,” and “use”) for “technology” for items controlled under this entry.

Related Definitions: N/A

Items:

a. “Software” or encryption keys/codes “specially designed” to enhance or release the performance characteristics of equipment not controlled by ECCN 3A225, so that such equipment meets or exceeds the performance characteristics of equipment controlled by that ECCN.

b. “Software” “specially designed” to enhance or release the performance characteristics of equipment controlled by ECCN 3A225.

3D611 “Software” “specially designed” for military electronics, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NS, RS, AT, UN

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry except 3D611.y</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>RS applies to entire entry except 3D611.y</td>
<td>RS Column 1</td>
</tr>
<tr>
<td>RS applies to 3D611.y</td>
<td>China, Russia, or Venezuela (see § 742.6(a)(7))</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
<tr>
<td>UN applies to entire entry</td>
<td>See § 746.1(b) for</td>
</tr>
</tbody>
</table>

List Based License Exceptions (see Part 740 for a description of all license exceptions)

TSR: N/A

Special Conditions for STA

STA: 1. Paragraph (c)(2) of License Exception STA (§ 740.20(c)(2) of the EAR) may not be used for any “software” in 3D611.

2. Except for “build-to-print” software, License Exception STA is not eligible for software enumerated in ECCN 3D611.b.

List of Items Controlled

Related Controls: “Software” directly related to articles enumerated in USML Category XI is controlled in USML Category XI(d).

Related Definitions: N/A

Items:

a. “Software” “specially designed” for the “development,” “production,” operation, or maintenance of commodities controlled by ECCN 3A611 (other than 3A611.y) and 3B611.

b. “Software” “specially designed” for the “development,” “production,” operation or maintenance of technology in ECCN 3E611.b.

c. through x. [Reserved]

y. “Software” “specially designed” for the “production,” “development,” operation or maintenance of commodities enumerated in ECCNs 3A611.y.

3D980 “Software” “specially designed” for the “development”, “production”, or “use” of
commodities controlled by 3A980 and 3A981.

License Requirements

Reason for Control: CC, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC applies to entire entry</td>
<td>CC Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

The list of items controlled is contained in the ECCN heading.

3D991 “Software” “specially designed” for the “development”, “production”, or “use” of electronic devices, “parts” or “components” controlled by 3A991, general purpose electronic equipment controlled by 3A992, or manufacturing and test equipment controlled by 3B991 and 3B992; or “software” “specially designed” for the “use” of equipment controlled by 3B001.g and .h.

License Requirements

Reason for Control: AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT applies to entire</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

The list of items controlled is contained in the ECCN heading.

E. “TECHNOLOGY”

3E001 “Technology” according to the General Technology Note for the “development” or “production” of equipment or materials controlled by 3A (except 3A980, 3A981, 3A991, 3A992, or 3A999), 3B (except 3B991 or 3B992) or 3C (except 3C992).

License Requirements

Reason for Control: NS, MT, NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to “technology” for items controlled by 3A001, 3A002, 3A003, 3B001, 3B002, or 3C001 to 3C006.</td>
<td>NS Column 1</td>
</tr>
</tbody>
</table>

Export Administration Regulations

Bureau of Industry and Security

June 29, 2020
License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

Reporting Requirements

See § 743.1 of the EAR for reporting requirements for exports under License Exceptions, Special Comprehensive Licenses, and Validated End-User authorizations.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

STA: License Exception STA may not be used to ship or transmit “technology” according to the General Technology Note for the “development” or “production” of equipment specified by ECCNs 3A002.g.1 or 3B001.a.2 to any of the destinations listed in Country Group A:6 (See Supplement No.1 to part 740 of the EAR).

List of Items Controlled

Related Controls: (1) “Technology” according to the General Technology Note for the “development” or “production” of certain “space-qualified” atomic frequency standards described in Category XV(e)(9), MMICs described in Category XV(e)(14), and oscillators described in Category XV(e)(15) of the USML are “subject to the ITAR” (see 22 CFR parts 120 through 130). See also 3E101, 3E201 and 9E515. (2) “Technology” for “development” or “production” of “Microwave Monolithic Integrated Circuits” (“MMIC”) amplifiers in 3A001.b.2 is controlled in this ECCN 3E001; 5E001.d refers only to that additional “technology” “required” for telecommunications.

Related Definition: N/A

Items:

The list of items controlled is contained in the ECCN heading.

Note 1: 3E001 does not control “technology” for equipment or “components” controlled by 3A003.
Note 2: 3E001 does not control “technology” for integrated circuits controlled by 3A001.a.3 to a.14, having all of the following:

a) Using “technology” at or above 0.130 μm; and

b) Incorporating multi-layer structures with three or fewer metal layers.

Note 3: 3E001 does not apply to ‘Process Design Kits’ (‘PDKs’) unless they include libraries implementing functions or technologies for items specified by 3A001.

Technical Note: A ‘Process Design Kit’ (‘PDK’) is a software tool provided by a semiconductor manufacturer to ensure that the required design practices and rules are taken into account in order to successfully produce a specific integrated circuit design in a specific semiconductor process, in accordance with technological and manufacturing constraints (each semiconductor manufacturing process has its particular ‘PDK’).

3E002 “Technology” according to the General Technology Note other than that controlled in 3E001 for the “development” or “production” of a “microprocessor microcircuit”, “micro-computer microcircuit” and microcontroller microcircuit core, having an arithmetic logic unit with an access width of 32 bits or more and any of the following features or characteristics (see List of Items Controlled).

License Requirements

Reason for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: Yes

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A

Items:

a. A ‘vector processor unit’ designed to perform more than two calculations on floating-point vectors (one dimensional arrays of 32-bit or larger numbers) simultaneously;

Technical Note: A ‘vector processor unit’ is a processor element with built-in instructions that perform multiple calculations on floating-point vectors (one-dimensional arrays of 32-bit or larger numbers) simultaneously, having at least one vector arithmetic logic unit and vector registers of at least 32 elements each.

b. Designed to perform more than four 64-bit or larger floating-point operation results per cycle;

or

c. Designed to perform more than eight 16-bit fixed-point multiply-accumulate results per cycle (e.g., digital manipulation of analog information that has been previously converted into digital form, also known as digital “signal processing”).

Note 1: 3E002 does not control “technology” for multimedia extensions.
Note 2: 3E002 does not control "technology" for microprocessor cores, having all of the following:

a. Using "technology" at or above 0.130 µm; and

b. Incorporating multi-layer structures with five or fewer metal layers.

Note 3: 3E002 includes "technology" for the "development" or "production" of digital signal processors and digital array processors.

3E003 Other "technology" for the "development" or "production" of the following (see List of Items Controlled).

License Requirements

Remark for Control: NS, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: Yes, except .f and .g

List of Items Controlled

Related Controls: See 3E001 for silicon-on-insulation (SOI) technology for the "development" or "production" related to radiation hardening of integrated circuits.

Related Definitions: N/A

Items:

a. Vacuum microelectronic devices;

b. Hetero-structure semiconductor electronic devices such as high electron mobility transistors (HEMT), hetero-bipolar transistors (HBT), quantum well and super lattice devices;

Note: 3E003.b does not control "technology" for high electron mobility transistors (HEMT) operating at frequencies lower than 31.8 GHz and hetero-junction bipolar transistors (HBT) operating at frequencies lower than 31.8 GHz.

c. "Superconductive" electronic devices;

d. Substrates of films of diamond for electronic components;

e. Substrates of silicon-on-insulator (SOI) for integrated circuits in which the insulator is silicon dioxide;

f. Substrates of silicon carbide for electronic components;

g. ‘Vacuum electronic devices’ operating at frequencies of 31.8 GHz or higher.

3E101 “Technology” according to the General Technology Note for the “use” of equipment or “software” controlled by 3A001.a.1 or .2, 3A101, or 3D101.

License Requirements

Remark for Control: MT, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT applies to entire entry</td>
<td>MT Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A
List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

The list of items controlled is contained in the ECCN heading.

3E102 “Technology” according to the General Technology Note for the “development” of “software” controlled by 3D101.

License Requirements

Reason for Control: MT, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>County Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT applies to entire entry</td>
<td>MT Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

The list of items controlled is contained in the ECCN heading.

3E201 “Technology” according to the General Technology Note for the “use” of equipment controlled by 3A001.e.2 or .e.3, 3A201 or 3A225 to 3A234.

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to “technology” for equipment controlled by 3A001.e.2, or .e.3, 3A201 or 3A225 to 3A234 for NP reasons</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

The list of items controlled is contained in the ECCN heading.

3E202 “Technology” according to the General Technology Note for the “development,” “production,” or “use” of “software” controlled by 3D201 or 3D202.

License Requirements

Reason for Control: NP, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP applies to entire entry</td>
<td>NP Column 1</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled
Related Controls: N/A
Related Definitions: N/A

Items:

The list of items controlled is contained in the ECCN heading.

3E611 “Technology” “required” for military electronics, as follows (see List of Items Controlled).

License Requirements

Reason for Control: NS, RS, AT, UN

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS applies to entire entry except 3E611.y</td>
<td>NS Column 1</td>
</tr>
<tr>
<td>RS applies to entire entry except 3E611.y</td>
<td>RS Column 1</td>
</tr>
<tr>
<td>RS applies to 3E611.y</td>
<td>China, Russia, or Venezuela (see § 742.6(a)(7))</td>
</tr>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
<tr>
<td>UN applies to entire entry except 3E611.y</td>
<td>See § 746.1(b) for UN controls</td>
</tr>
</tbody>
</table>

List Based License Exceptions (see Part 740 for a description of all license exceptions)

TSR: N/A

Special Conditions for STA

STA: 1. Paragraph (c)(2) of License Exception STA (§ 740.20(c)(2) of the EAR) may not be used for any “technology” in 3E611.
2. Except for “build-to-print technology,” License Exception STA is not eligible for “technology” enumerated in ECCN 3E611.b.

List of Items Controlled

Related Controls: Technical data directly related to articles enumerated in USML Category XI is controlled in USML Category XI(d).

Related Definitions: N/A

Items:

a. “Technology” (other than that controlled by 3E611.b or 3E611.y) “required” for the “development,” “production,” operation, installation, maintenance, repair, overhaul, or refurbishing of commodities or software controlled by ECCN 3A611, 3B611 or 3D611.

b. “Technology” “required” for the “development,” “production,” operation, installation, maintenance, repair, overhaul, or refurbishing of the following if controlled by ECCN 3A611, including 3A611.x:

b.1. Helix traveling wave tubes (TWTs);

b.2. Transmit/receive or transmit modules.

c. through x. [Reserved]

y. “Technology” “required” for the “production,” “development,” operation, installation, maintenance, repair, overhaul, or refurbishing of commodities or software enumerated in ECCNs 3A611.y or 3D611.y.

3E980 “Technology” “specially designed” for “development”, “production”, or “use” of commodities controlled by 3A980 and 3A981.

License Requirements

Reason for Control: CC, AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC applies to entire entry</td>
<td>CC Column 1</td>
</tr>
<tr>
<td>AT applies to entire</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>
List Based License Exceptions (See Part 740 for a description of all license exceptions)

TSR: N/A

List of Items Controlled

Related Controls: N/A
Related Definitions: N/A
Items:

The list of items controlled is contained in the ECCN heading.

3E991 “Technology” for the “development,” “production” or “use” of electronic devices, “parts” or “components” controlled by 3A991, general purpose electronic equipment controlled by 3A992, or manufacturing and test equipment controlled by 3B991 or 3B992, or materials controlled by 3C992.

License Requirements

Reason for Control: AT

<table>
<thead>
<tr>
<th>Control(s)</th>
<th>Country Chart (See Supp. No. 1 to part 738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT applies to entire entry</td>
<td>AT Column 1</td>
</tr>
</tbody>
</table>

License Requirements Note: See § 744.17 of the EAR for additional license requirements for microprocessors having a processing speed of 5 GFLOPS or more and an arithmetic logic unit with an access width of 32 bit or more, including those incorporating “information security” functionality, and associated “software” and “technology” for the “production” or “development” of such microprocessors.

List Based License Exceptions (See Part 740 for a description of all license exceptions)